

IC Library ManagerIC Library ManagerIC Library ManagerIC Library Manager

OPERATOR’S MANUAL

ABI Electronics Limited
Dodworth Business Park
Barnsley
South Yorkshire
S75 3SP
www.abielectronics.co.uk

CompactLink IC Library Manager Contents

Copyright 2006-2016 ABI Electronics Limited i

CONTENTS
1. Preface .. 1

1.1. How to use this manual ... 1
1.2. Precautions ... 1

1.2.1. Host PC .. 1
1.2.2. Data storage .. 1
1.2.3. Programme debugging .. 1

1.3. Maintenance .. 2
1.3.1. Software ... 2

1.4. Contacting ABI Electronics Ltd .. 2
1.5. Copyright and disclaimers ... 2

2. Introduction ... 3
2.1. What is CompactLink? .. 3

3. Getting started .. 4
3.1. Checklist.. 4
3.2. System requirements .. 4
3.3. Installing security dongle ... 4
3.4. Installing CompactLink .. 5
3.5. Running CompactLink ... 5
3.6. IC library data structure ... 5
3.7. Theory of CompactLink operation ... 6
3.8. Reviewing the IC library .. 7
3.9. Viewing an IC .. 7
3.10. Copying/editing an IC .. 8
3.11. Adding an IC to the USER library .. 8
3.12. Specifying a functional test for the IC .. 9
3.13. Developing a functional test .. 11
3.14. Deleting an IC from the USER library.. 11
3.15. Printing or exporting a device .. 12
3.16. Generating library files .. 12

4. Writing your own test programmes ... 15
4.1. Introduction to PLIP ... 15
4.2. Opening the test development and debugging window......................... 15
4.3. Entering and compiling a programme ... 17
4.4. Fixing the errors and warnings .. 17
4.5. Getting help ... 18
4.6. Documenting your programme .. 18
4.7. Connecting to hardware .. 18

4.7.1. Connecting to SYSTEM 8 modules .. 19
4.7.2. Connecting to Compact Professional USB products 20
4.7.3. Connecting to Compact products with serial cable 20

4.8. Debugging your programme ... 21
4.9. Setting breakpoints ... 22
4.10. Debugging techniques .. 23

4.10.1. Compiler errors .. 23
4.10.2. Run time errors .. 23
4.10.3. Logical errors ... 24

CompactLink IC Library Manager Contents

Copyright 2006-2016 ABI Electronics Limited ii

5. Some common programming concepts .. 27
5.1. Digital test programming ... 27

5.1.1. Combinational devices – gates, buffers, multiplexers 28
5.1.2. Sequential devices – counters, registers, latches 28
5.1.3. Tri-state devices – buffers, bus drivers .. 29
5.1.4. LSI and complex devices ... 29

5.2. Analogue test programming .. 30
5.2.1. Using the DRIVE commands ... 31
5.2.2. Using the RESTRICT command ... 32
5.2.3. Using parameters ... 33
5.2.4. Using the SOURCE command ... 34

5.3. Automatic circuit compensation .. 34
5.3.1. Compensation by splitting .. 35
5.3.2. Compensation by skipping ... 35
5.3.3. Compensation by adapting .. 37
5.3.4. Compensation by trying ... 37

6. Example of a 7400 digital IC test programme for the BFL/CMC 39
6.1. Defining the IC inputs .. 39
6.2. Simple test for a logic NAND gate ... 40
6.3. Logic NAND gate test with BFL circuit compensation 40
6.4. Improved logic NAND gate test with BFL circuit compensation and
looping 41
6.5. Complete programme for logic NAND gate ... 42

7. Example of a diode analogue test programme for the AICT 46
8. Example of an operational amplifier analogue test programme for the LMC .. 51
9. PLIP command and function reference ... 56

9.1. Introduction ... 56
10. Troubleshooting and support.. 58
11. Appendices .. 59

11.1. Library parameter reference .. 59
11.2. CompactLink error/warning messages .. 61
11.3. PLIP error messages .. 63
11.4. PLIP warning messages ... 68
11.5. PLIP run time error messages .. 69

12. Index ... 71

CompactLink IC Library Manager Preface

Copyright 2006-2016 ABI Electronics Limited Page 1

1. Preface
Thank you for purchasing the ABI CompactLink IC Library Development Manager
software. Please refer to this manual before attempting to install or use the
software.

1.1. How to use this manual

This manual is divided into sections describing all aspects of CompactLink
operation. There is a getting started guide, designed to get you up and working
quickly, followed by more detailed instructions on the various functions. We
recommend you read at least sections 1 to 3 before using CompactLink for the
first time.

This manual is written on the assumption that you are already familiar with the
SYSTEM 8, BoardMaster and Compact products from ABI. Please refer to the help
text and/or manuals for those products if you require further information.

For the latest product information, including an up to date copy of this manual and
the latest software, please visit www.abielectronics.co.uk.

This symbol is used where the information given is important to prevent
damage to your system or board under test.

1.2. Precautions

1.2.1. Host PC

The CompactLink software is designed for use on a PC, laptop or tablet running
Microsoft Windows software from XP to Windows 10, and can also be used on the
BoardMaster 8000 range of products from ABI. Operation on any other type of PC
or with any other operating system is not supported.

1.2.2. Data storage

The CompactLink software uses a local database for storing IC details and test
programmes. Any new ICs you add to the system are stored in the file
“CompactLinkICLibrary.dat” in an application data folder, which is accessible from
the Windows Start menu. It is important that this file is backed up regularly to
ensure that user devices and test programmes are not lost in the event of hardware
failure.

1.2.3. Programme debugging

When testing ICs with the SYSTEM 8 BFL, ATM or AICT modules, backdriving
(refer to the SYSTEM 8 or BoardMaster help for an explanation of backdriving) is
used to isolate the inputs of the IC under test from the surrounding components.

CompactLink IC Library Manager Preface

Copyright 2006-2016 ABI Electronics Limited Page 2

When single stepping a PLIP test using the CompactLink debugger,
this may result in extended backdriving times which could cause
damage to the BFL/AICT module and/or the board under test. We
recommend using an IC in the out of circuit adapter or in an
unconnected, powered socket for IC test programme development.

1.3. Maintenance

1.3.1. Software

The CompactLink software is not warranted as being fit for any particular purpose,
although ABI will make every effort to ensure that it is suitable for use in
conjunction with ABI SYSTEM 8, BoardMaster and Compact products for
developing new IC tests. Updated versions of the software are available on our
website (www.abielectronics.co.uk) free of charge. ABI however reserves the right
to charge for completely new versions of the software.

1.4. Contacting ABI Electronics Ltd
ABI Electronics Ltd
Dodworth Business Park
Barnsley
South Yorkshire
S75 3SP
United Kingdom

Email: sales@abielectronics.co.uk

Website: www.abielectronics.co.uk

Telephone: +44 (0)1226 207420

1.5. Copyright and disclaimers

This manual copyright 2006-2016 ABI Electronics Ltd. All rights reserved. First
published September 2006.

You may make electronic or paper copies of this manual solely for use in
conjunction with operating the software as a bona fide customer, but not for any
other purpose.

Windows® and Microsoft® are registered trademarks of Microsoft Corporation.

ABI Electronics Ltd reserves the right to make product improvements and/or
changes at any time without prior notice, including changes to the software
specifications. This manual may therefore not necessarily reflect current software
specifications. An updated copy is available for free download on our website
www.abielectronics.co.uk

Whilst ABI makes every effort to ensure the accuracy of this manual, we will not
accept liability for damages incurred directly or indirectly from errors, omissions in
this manual, or discrepancies between the manual and the CompactLink software
itself.

CompactLink IC Library Manager Introduction

Copyright 2006-2016 ABI Electronics Limited Page 3

2. Introduction
Congratulations on your decision to purchase the CompactLink IC Library
Manager software.

2.1. What is CompactLink?

CompactLink IC Library Development Manager is designed to allow you to add
new ICs, with or without a functional test, to the library of your ABI SYSTEM 8,
BoardMaster, ChipMaster Compact or LinearMaster Compact.

The heart of CompactLink is PLIP - PremierLink IC Programme. PLIP is a high-
level descriptive test programming language optimised for generation of both
analogue and digital IC test programmes. Programmes are compiled into machine
code, making them fast and compact, and can be freely added to the SYSTEM 8 or
Compact libraries. CompactLink contains a sophisticated test programme
debugger which allows you to check that your programme executes correctly
before including it in your SYSTEM 8 or Compact library.

Note that there are two versions of the software, PremierLink and CompactLink.
If you are running the CompactLink version, some of the device information
relating to the SYSTEM 8 BFL, ATM and AICT products will not be visible.

It is very important to understand that there are two separate functions involved in
adding an IC to the user library. Firstly, the IC number, size, pin-out, power supply
pins and other information must be defined which will be described in detail later.
After this process is complete, the IC can be included in your user library, and you
can perform (depending on the target product) the CONNECTIONS, VOLTAGE,
THERMAL and DIGITAL V-I tests on it. However, no functional test is possible
unless you write a functional test programme, which is the second main function of
CompactLink.

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 4

3. Getting started
This section is intended to get CompactLink up and running quickly. Please read
carefully before using for the first time. Detailed descriptions of the meaning of the
various parameters and device entries will be given later on in the manual

3.1. Checklist

The following items are included in the CompactLink package: -

• CompactLink CD

• CompactLink USB security dongle

• Operator’s manual

The package may also include a serial adapter/cable and/or FLASH IC(s) for first
time updating of older ChipMaster or LinearMaster Compact products.

3.2. System requirements

The CompactLink software should be installed on a PC, laptop or tablet with the
following minimum specification: -

Intel CPU 1GHz or equivalent, 128M RAM, 500MB hard drive space, free USB port,
Microsoft Windows operating system (from XP to Windows 10)

For debugging and library updating the PC requirements depend on the type of
product you are using. Your PC requires a connection to the SYSTEM 8
BFL/ATM/AICT module, or to the ChipMaster/LinearMaster Compact, to allow test
programmes to be developed and added to the library. Depending on the type of
product you wish to use, the following will be required: -

Product Connection

SYSTEM 8 BFL/AICT module in external case USB cable

SYSTEM 8 BFL/AICT module built into PC PCI card

SYSTEM 8 ATM module USB cable

BoardMaster 8000 Plus PCI card, already fitted

ChipMaster/LinearMaster Compact Professional USB cable

ChipMaster/LinearMaster Compact (older RS232
versions)

COM port on your PC, or
USB to RS232 adapter
and serial cable

3.3. Installing security dongle

Before the CompactLink software can be used, the USB security dongle must be
installed. The drivers are included on the CompactLink installation CD and must
be installed as follows:

• Ensure you are running Windows on an account with Administrator privileges.

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 5

• Insert the CompactLink CD in the CD or DVD drive.

• Click “Start, Run, Browse” on your PC and navigate to your CD ROM drive
(usually drive D) with the CompactLink CD inserted.

• Select the file “CBUSetup.exe” and click “Open”, then click “OK” to start the
installation.

• Follow the instruction on the screen.

Once the installation has completed, the USB security token can be inserted into
any available USB socket on your computer.

3.4. Installing CompactLink

To install the CompactLink software, follow this step by step procedure: -

• Insert the CompactLink CD in your CD or DVD drive.

• Click “Start, Run, Browse” on your PC and navigate to your CD ROM drive
(usually drive D) with the CompactLink CD inserted.

• Select the file “setup.exe” and click “Open”, then click “OK” to start the
installation.

• Follow the installation instructions on the screen. We recommend that all
options are left at their default values.

3.5. Running CompactLink

To launch the software, click Start/Programs/CompactLink/CompactLink on your
PC. You can also create a desktop shortcut if you wish to make starting easier.
The opening screen (example below) shows the Review Library screen displaying
a list of devices in the current library and provides a menu to access all software
functions.

3.6. IC library data structure

Each device in the library is structured as follows: -

• General Device Information

o BFL module test information

o AICT module test information

o ATM module test information

o ChipMaster Compact test information

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 6

o LinearMaster Compact test information

As shown, the device data is organised into Device Information and Target
Information. Each device can have up to five targets, each containing target
specific information for the five products supported by CompactLink (BFL, AICT,
ATM, ChipMaster Compact and LinearMaster Compact). Note that not all devices
can be tested on all targets – for example the diode and transistor tests are only
applicable for the AICT product.

The entire library of installed ICs is divided into FAMILIES, to make the
management of them easier. The current FAMILIES are: -

USER, 74xx, 4xxx, MEMORY, INTERFACE, LSI, MICROS, PAL/PLD, ECL,
LINEAR, GENERIC, ANALOGUE, DISCRETE, DATACONV, OPTO, CONNECTOR,
PACKAGE, BUS, INTERCON, PROBE, ALL

The GENERIC, ANALOGUE and DISCRETE libraries contain analogue IC tests
and discrete component tests for use with the SYSTEM 8 AICT module. The other
libraries contain digital IC tests and are for use with one or more SYSTEM 8 BFL
modules. Note that the LINEAR library is designed for use with the BFL module,
and is included for backward compatibility with earlier versions of the SYSTEM 8
software.

Note that for Compact products, the devices in the internal library provided with the
product are not included in the CompactLink database but can still be accessed
by entering their numbers in the usual way on the Compact keypad. See the
Compact manual(s) for a full device listing.

A full list of all device information entries with their meanings is given in appendix
11.1

3.7. Theory of CompactLink operation

The following steps are required to add an IC to the library for use on the SYSTEM
8 BFL or AICT modules, or with either Compact product. This is a summary – full
details are given later in the manual: -

• Add a new device to your USER library using CompactLink

• Fill in the device information from the device data sheet

• Enable the target product(s) with which you wish to test the device

• Fill in the target information for the device/target combination

• If functional testing is required: -

• Enable the functional test for the chosen target product

• Choose a test for the device, or develop a new test if no suitable test is
available

• Generate the USER library files for the target product group (SYSTEM 8 or
Compact)

• Copy the generated library files to your SYSTEM 8 folder, or download them to
the Compact product

• The added device is now available in your SYSTEM 8 or Compact device list

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 7

3.8. Reviewing the IC library

The standard software on the installation CD includes library and test data for all
ICs in the current ABI library. These ICs cannot be modified but are available for
viewing or copying. The built in library is subdivided into Families (74xx, 4xxx,
Memory, LSI etc) and Targets (BFL, AICT, ATM, ChipMaster, LinearMaster).

By default the entire library is shown, but you can restrict the display to a particular
Family and/or Target by using the combo boxes. If you want to find a particular
device, enter its number in the Find Device box. You can also filter the list by
entering text in the Function box – the list will be filtered to show only those entries
containing the entered text.

You can also sort the list of devices by clicking on any of the column headings in
the Library Review display. If you sort on the Device column, by default the full
device name is used to sort the entries. However, if you click Tools/Options you
can turn on Intelligent Sort, which uses the numeric part of the device name only
to produce a more logical list of devices.

3.9. Viewing an IC

There are several ways to select a device for viewing: -

• Click on a device in the list and click Device/Edit on the menu

• Right click on a device in the list and choose Edit from the popup menu

• Double click on a device in the list

• Enter all or part of the device name in the Find Device box, then press the
Enter key

As an example, set the Family and Target selections to All and clear the Function
box to display the entire library. Type 7400 in the Find Device box and press
Enter. The 7400 device will then be opened for viewing as shown below (on the
CompactLink version of the software, the BFL Test and AICT Test tabs are not
visible): -

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 8

In this Edit Device Definition screen you can see the name, function and family of
the 7400 device, along with 5 tabs for further device information.

In the Device Information tab you can see the pin out and device specific
information such as the package, thresholds and output types. Note that since the
7400 device is part of the built in library, you cannot edit any of these entries.

In the BFL Test tab you can see various entries which apply to the 7400 device
when testing on the BFL product, including the types of test which are enabled,
voltage levels, several library options and the functional test used for this device.
Notice that the 7400 device has the Include device in BFL library checkbox set
for the BFL target product.

The other test tabs contain similar information but the 7400 device is not currently
specified for testing on these products.

3.10. Copying/editing an IC

You cannot directly edit any of the devices in the standard library, but you can copy
one of the standard devices into the USER library, which is then available for you to
edit. As an example of this, carry out the following steps: -

• Return to the Library Review screen by clicking Cancel if you are still looking
at the 7400 device

• Find the 7400 device again by typing into the Find Device box

• Choose Device/Copy from the menu or right click and select Copy

• Enter a new name (e.g. 7400BFL or 7400CMC) for the New Device Name and
click OK

The new 7400BFL/7400CMC device will then be added to your USER library.
Locate it in the library list and double click on it to edit. You can now change the
various entries for the device without affecting the original 7400 device in the
standard library.

On both the ChipMaster and LinearMaster Compact products there is only a
numeric keypad available for entering device numbers. Therefore, on the
ChipMaster and LinearMaster edit tabs there is a field (Use Number) provided for a
numeric part number. For example, if the full part number for a new device is
LM339N, you may wish to enter the number 339 in the Use Number field. The
ChipMaster Compact and LinearMaster Compacts contain an internal library of IC
tests which is not visible in the CompactLink software. When deciding which test
to execute, the Compact will give priority to the user library if a device with the
same number exists. In the above example the 339 new user test for the LM339N
will be executed rather than the built-in LM339 test – if you wish to have both tests
available use a different number (e.g. 3390) for the user test.

3.11. Adding an IC to the USER library

To add a new IC to the library, choose Device/Add from the menu. You will see
the usual Edit Device Definition screen but this time with blank or default entries.
On the Device Information tab, fill in the Name and Function boxes and enter

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 9

suitable values for the other options. The new device defaults to 14 pins, so you
may wish to Add or Delete pins with the buttons if the device you are adding has a
different number of pins. To change the pin name, click on the pin and enter the
new name (maximum 8 characters)

Now you need to choose the product(s) with which the new device is to be tested.
For example, if you intend to add this device to the BFL library, open the BFL Test
tab and click Include device in BFL library. You can then set the other BFL
specific entries as you wish. You must enable at least 1 of the test types
(Connections, Voltage, V-I and Functional).

3.12. Specifying a functional test for the IC

If you have enabled Functional testing for your newly added device, you have to
specify which functional test to use. The actual functional tests are stored
separately from the devices since several devices with comparable functions and
pin-outs will usually share one test. When you enable Functional testing, you will
see in the Functional Test Configuration area that the Current Test entry is
blank, showing that as yet no test has been selected for the device.

To select a test, click the Select Test button to show the Select Test window as
shown below: -

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 10

The Select Test window displays a list of all tests present in the system. There are
currently 2 types of test available: -

• Assembler language tests. These are reserved for the SYSTEM 8 BFL
standard library only and cannot be edited or debugged, nor can they be used
with the AICT or Compact products. However, if your device is exactly function
and pin compatible with a device in the standard library you can specify an
assembler language test if you wish.

• PLIP (PremierLink IC Programme) tests. PLIP is the CompactLink built in
test programming language and allows you to develop and debug a test using
the integrated debugger, which will be described in detail later in the manual.

If your new device is pin and functional compatible with an existing device it can
probably make use of a test already in the list. For example, the 7400 test for the
BFL is used by over 80 different devices, which are all pin compatible with the
7400. If you want to specify an existing test, find the test (you can use the Find
box to quickly locate a test) and click Select to associate this test with your new
device.

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 11

Often you will want to add a new test for a new device. To do this, there are 2
alternatives: -

• If there is a PLIP test in the library that is similar to the one you want, you can
use Copy Test to make a copy of it with a new name. To do this click Copy
Test, select the copied test and click Rename to give the test your desired
name.

• If you want a complete new test, click Add New to add a new test, select it
then click Rename to change the name.

In all cases, the preview window displays the source code for the selected test to
help you choose a suitable test for your device.

To delete a test, select the test and click Delete, but note that you cannot delete a
test from the standard library nor can you delete a test that is allocated to a device.

3.13. Developing a functional test

Test programming and debugging is a complex subject, which we will discuss in
detail later. However, to see the required steps, follow the procedure below: -

• If you have not already done so, add a new device to your USER library as
described above

• Define the pin names for the new device, since they are required for the
functional test

• Enable the device for the chosen target product as described above

• Enable the functional test for the device/target combination

• Click Select Test and add a new functional test for the device

• Click Develop Test to enter the functional test development and debugging
window

• In the Source Programme window, enter the PLIP code for the test (full
details later)

• Use the toolbar Build Test button to compile the test and fix any compilation
errors

• Connect up your chosen hardware (SYSTEM BFL/AICT modules, or either
Compact product)

• Choose Tools/Configure Hardware and specify the type of hardware
interface to be used

• Use the toolbar Send Test button to download the compiled test to the target
hardware

• Use the debugging commands and windows to step though the test and
confirm that it executes correctly

• Once complete, save the test and close the debugging window

• Generate a new set of USER library files containing the new test

3.14. Deleting an IC from the USER library

There are two ways to delete a device from your USER library: -

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 12

• Select the device to be deleted in the Library Review screen by clicking on it
or by entering all or part of its name in the Find box

• Right click on the device and choose Delete, or

• Choose Device/Delete from the menu

Once you have deleted a device, there is no way to restore it except by re-entering
all its information. You should make regular backups of the database file
(CompactLinkICLibrary.dat) to ensure you do not lose wanted data.

Note that you cannot delete a device from the standard built-in library.

3.15. Printing or exporting a device

If you wish to have a hard copy record of a device you can create a report and then
either print the report or save it to a text file. To do this, select the device in the
Library Review screen and select Device/Print/Export from the menu, or
alternatively right click on the device and choose Print/Export. In the report
window which appears, you then have the choice between Export, which saves the
device details as a text file, and Print, which sends the details to your printer.

3.16. Generating library files

Once you have completed adding devices and/or tests, you will probably want to
generate a set of library files to include the new device in the library of your
SYSTEM 8 or Compact product. There are 3 options which can be selected from
the Library menu depending on your version: -

• Update SYSTEM 8 User Library. This produces a set of user library files in the
correct format for use with your SYSTEM 8 Premier software.

• Update CMC User Library. This produces a ChipMaster Compact user library
file (CML file) which can be downloaded and programmed into your
ChipMaster Compact over the serial cable.

• Update LMC User Library. This produces a LinearMaster Compact user library
file (LML file) which can be downloaded and programmed into your
LinearMaster Compact over the serial cable.

As an example, assume we are going to generate a user library file for the
LinearMaster Compact. Choose Library/Update LMC User Library from the
menu and the Update Library window appears as follows (assuming the
LinearMaster is actually connected to the COM4 port as shown): -

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 13

The process has 4 stages enabled by the 4 check boxes as follows: -

• Firstly, you must compile all your user tests. The integrated debugger uses a
different format for compiled tests to allow easy debugging, so all tests need to
be recompiled at this stage. Select the Recompile Tests check box to enable
the compiler to compile all LinearMaster Compact tests.

• Enable the Build library file check box to generate the library file for the
selected product. In this case the file LMCLIB.LML will be generated in the
folder specified by the Tools/Options menu function.

• If you want to create a backup of any existing user library files, enable the
Backup existing files check box. A backup folder will be created and the
existing library file(s) will be copied to it before being overwritten with the new
file(s).

• If you have a Compact product connected (as in this example – for more
details see the Compact manual and section 4.7), enable the Download
library file on success check box. This will cause the generated file(s) to be
automatically downloaded to the Compact provided the compilation and file
generation processes executed correctly. With SYSTEM 8 this stage is not
required as the library files are already created in the correct location.

• If you have previously generated a Compact library file using the above
procedure, you can enable the Update from existing file check box to skip
the compilation and building stages and just download the previously
generated file.

Once you have done this you can disconnect the Compact from CompactLink and
the ICs will then be available in the user library. If you run your SYSTEM 8
software the new devices will appear in the user library for your chosen target
product (BFL or AICT or both).

Note: The format of the LinearMaster Compact USER library (LML) file was
changed from version 2.07 onwards. If you have a LinearMaster with an old USER
library, you should do the following to upgrade your library: -

• Make sure you are using CompactLink version 1.16 or greater. Upgrade the
software if required before proceeding.

CompactLink IC Library Manager Getting started

Copyright 2006-2016 ABI Electronics Limited Page 14

• On the LinearMaster Compact, make sure you are using version 2.07 or
greater. Upgrade the LinearMaster if required.

• Rebuild your USER library file as described above and send to the
LinearMaster.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 15

4. Writing your own test programmes

4.1. Introduction to PLIP

Once you have added a device to the library you can perform (on the SYSTEM 8
BFL) connections, voltage and V-I tests on it. However, to get the best out of your
system you can also add a functional test to the device to perform a truth table or
analogue (depending on the target product and the device type) test on the device.
Functional tests for all target products are written in a high-level programming
language called PLIP (PremierLink IC Programme).

The PLIP test programming language is a high-level language designed specifically
for test programming. The syntax is highly descriptive, so that programmes are to
a large extent self-commenting, but of course comments can be inserted if
required. IC pins are referred to by their names (as defined by the IC device
information) to avoid continual reference to the pin-out during programming, and to
make the programmes more readable. In addition, related sets of pins can be
defined as a pin group, which can then be referred to by its group name. This
again greatly improves the readability and understanding of a test programme.
See the SET command for further details of this facility.

The compiler generates binary data which can be executed in stand alone form by
the integral debugger, or combined into library files for use with SYSTEM 8 or
Compact products. The SYSTEM 8 and Compact software contains advanced run
time error checking traps to ensure that execution errors (e.g. divide by zero, stack
overflow, out of range voltages etc) do not cause system crashes.

Any PLIP programme contains a combination of COMMANDS, FUNCTIONS and
VARIABLES, the meaning of which will become clear if you work through the
development example for the 7400 IC given below.

4.2. Opening the test development and debugging window

The first step in writing any test programme is to add a new IC to the library and
add a new test for it, as follows: -

• Refer to sections 3.10 to 3.13 and add a 7400BFL (or 7400CMC if working with
the ChipMaster Compact) device to the library if not already present.

• Make the sure the pin names for the device are correct (1A, 1B, 1Y, 2A, 2B,
2Y, GND, 3Y, 3A, 3B, 4Y, 4A, 4B ,VCC) .

• Enable the Functional Test for the BFL or ChipMaster target product.

• Click Select Test to open the Select Test window.

• Click Add New to insert a new, blank test and change its name to 7400BFL or
7400CMC.

• Click OK to close the Select Test window.

• In the Edit Device window, click Develop Test to open the test development
and debugging window.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 16

The Source Programme for 7400BFL window (on the left) is where the test
programme code is entered. If you wish you can click the Full Screen button at
the top right of the Source Programme window to expand it to simplify entry of IC
test programmes. At the top of the window there is a ruler bar showing the tab stop
positions – you can use tabs in your programme to make it more readable and to
indent code inside procedures. You can change the tab positions by choosing

Tools/Options/Formatting from the menu or Options from the toolbar, and
entering a new Tab width value from 2 to 8. While entering the test programme,

you can click the Save Test button on the toolbar to save the current
programme in the database. You can also write the programme to a text file, or

read in a text file, using the Write Test and Load Test buttons on the
debug toolbar. These functions allow you, if you wish, to write programmes in text

format using an external text editor before reading them into the CompactLink
debugger.

The debug window also contains menu commands and toolbar buttons for
compiling and downloading the test, executing and stepping programmes, setting
breakpoints and watch values. The meaning of these will become clear as you
work through the example 7400 test below.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 17

4.3. Entering and compiling a programme

Before starting to work on a real programme, we will first have a look at the
operation of the editing and compilation system used for PLIP programs. In the
Source Programme window, type in the following PLIP programme: -

A = 0
B = A - D
C = A + E

Compile the programme by clicking the Build Test button and observe the
results. At the bottom left in the Info window, you will see that the compilation
failed with 2 errors and 1 warning as follows

4.4. Fixing the errors and warnings

This is a simple programme using variables and expressions. The variables A, B

and C are defined, but the variables D and E have not been defined yet are used in

expressions. This is an error as the compiler shows. CompactLink allows you to
quickly find the errors in your programme – click on the error message in the
Errors tab in the Info window and observe that the line in the Source Programme

window containing the error is highlighted. You can also use the Next
Problem/Previous Problem buttons to locate the errors in your programme.

The programme also has a warning that you have not included an END TEST

command – this is required for every PLIP programme because the end of the
programme may not necessarily be at the end of the text if procedures are defined
later in your programme.

To fix the errors and warnings, amend the programme as follows and recompile: -

A = 0
D = 1
E = 2
B = A - D

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 18

C = A + E
END TEST

You should now have a result with no errors and no warnings.

4.5. Getting help

CompactLink contains extensive on-line syntax help for PLIP programmes. To
access this, right click on the programme text in the Source Programme window
and select Syntax Help from the popup menu. CompactLink will attempt to find
help for the word you have clicked on and will display the correct syntax with
examples. When the PLIP Syntax Guide is open, you can choose other
commands from the combo boxes at the top to learn about all the PLIP statements.

Note that if the chosen word in the programme has more than one context, you will
be given a list of alternatives to choose from. Help is not available for comment
lines or unrecognised words. You can also press F1 or choose Help/Syntax from
the menu.

4.6. Documenting your programme

Although PLIP is a very readable language, it is not always clear what the intention
of the programme is. This is especially true for someone who has not written the
programme but has to update or modify it. To help with this you can add
comments to your programme to explain, in your own language, what the
programme is designed to do. To add a comment, type a * character followed by a

description of the programme function. The above simple programme could be
commented as follows: -

* Sample program to show variable definition and
expression use
* Define variables A, D, E and initialise
A = 0
D = 1
E = 2
* Define variables B and C and initialise with
expressions
B = A - D
C = A + E
* Tell PLIP this is the end of the test
END TEST

You can also include blank lines to separate out blocks of code to further improve
readability.

4.7. Connecting to hardware

Up to now we have used the CompactLink software alone with no connection to
any form of test hardware. However, to debug programmes you need a hardware

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 19

connection to the test product of your choice. Your SYSTEM 8 software will have
already been configured to connect to the modules in your system and
CompactLink makes use of these same connections. For the Compacts, a serial
cable is used connected to a COM port on your PC. A summary of the options is
shown in the table: -

Product Connection
Options

Comments

SYSTEM 8 BFL
SYSTEM 8 AICT

Internal PCI
card, or
USB External
Case

The PCI connection requires the
SYSTEM 8 module to be installed in a
drive bay in your PC. Refer to your
SYSTEM 8 manual for further details.
The BoardMaster 8000 Plus has pre-
installed PCI cards.

SYSTEM 8 ATM USB
ChipMaster/Linear
Master Compact
Professional

USB Older Compact products require a
USB-RS232 converter and serial
cable, available from ABI.

4.7.1. Connecting to SYSTEM 8 modules

Follow these steps to configure your CompactLink software to connect to your
SYSTEM 8 test hardware: -

• If you have not already done so, install the SYSTEM 8 modules and confirm
that they function correctly with the SYSTEM 8 Premier software (see SYSTEM
8 documentation).

• If you have not already done so, install the CompactLink software on the PC
which is controlling your SYSTEM 8 modules.

• Ensure that all your SYSTEM 8 modules are connected and, if using an
external case, ensure that the power is turned on and the USBl cable is
connected.

• Run the CompactLink software and choose Tools/Configure Hardware from
the main menu or from within the test development and debugging window.

• Click Add to add a hardware interface.

• Select an Interface Type from the Type combo box according to the hardware
configuration of the SYSTEM 8 module(s) on your PC. This will either be PCI
for an internal module or USB for a module in an external case.

• The Status will be automatically updated by CompactLink and will show
Found if the selected interface is present on your system.

• Click Refresh to update the list of attached modules. Confirm that the list is
correct for your configuration.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 20

• If you wish you can click Test to run the diagnostics on the attached module.

The result is displayed in the list.

• Click OK to save the hardware configuration.

4.7.2. Connecting to Compact Professional USB products

Follow these steps to configure your CompactLink software to connect to your
Compact Professional product: -

• If you have not already done so, install the CompactLink software on the PC
which is controlling your Compact product(s).

• Connect your ChipMaster or LinearMaster Compact to your PC with a USB
cable, turn on and select CmLink mode (See Compact manual).

• Run the CompactLink software and choose Tools/Configure Hardware from
the main menu or from within the test development and debugging window.

• Click Add to add a hardware interface.

• Select Interface Type from the Type combo box and choose USB.

• The Status will be automatically updated by CompactLink and will show
Found if the selected interface is present on your system.

• Click Refresh to update the list of attached modules. Confirm that the list is
correct for your configuration.

• If you wish you can click Test to run the diagnostics on the attached module.
The result is displayed in the list.

• Click OK to save the hardware configuration.

4.7.3. Connecting to Compact products with serial cable

Follow these steps to configure your CompactLink software to connect to your
older Compact product with a serial cable: -

• If you have not already done so, install the CompactLink software on the PC
which is controlling your Compact product(s).

• Power your Compact Product from mains using a battery eliminator.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 21

• Connect your Compact to a COM port on your PC, either directly or to a USB
port via a USB-RS232 converter.

• Turn on and select CmLink mode (See Compact manual).

• Run the CompactLink software and choose Tools/Configure Hardware from
the main menu or from within the test development and debugging window.

• Click Add to add a hardware interface.

• Select Interface Type from the Type combo box and choose Serial.

• Select a port for the interface using the Port combo box depending on the
COM port used for the serial connection.

• Select the newly added interface by clicking and click Settings. Confirm that
the serial port settings are Baud rate: 38400, Data bits: 8, Stop bits: 1, Parity:
None, Handshaking: Hardware.

• The Status will be automatically updated by CompactLink and will show
Found if the selected interface is present on your system.

• Click Refresh to update the list of attached modules. Confirm that the list is
correct for your configuration.

• If you wish you can click Test to run the diagnostics on the attached module.
The result is displayed in the list.

• Click OK to save the hardware configuration.

4.8. Debugging your programme

No matter how skilful you are as a programmer, inevitably your programme will
have problems (commonly called “bugs”) in it. The purpose of the debugger is to
help you identify these problems and fix them before adding the test to your library.
As an exercise in using the debugger, enter the short programme as described in
sections 4.3 to 4.5 above, then carry out the following steps: -

• Compile the programme by clicking the Build Test button.

• Send the compiled test programme to the hardware by clicking the Send
Test button. You should then see the following display: -

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 22

• The 4 execution buttons Execute, Step In, Step Over and
Reset are now enabled, and the current execution line (A = 0) is highlighted.

• On Compact products only, a further button Stop is displayed but not yet
enabled. This enables a running programme to be stopped, and is only
enabled during programme execution.

• Note that the 5 variables A to E are listed in the Variables debug tab on the
right, but the values are shown as “---“ since we have not yet executed the
program.

• Click the Step In button to step the program. Notice that the variable
values are now updated and the execution line moves on to the next line (D =

1). If you hover your mouse pointer over any of the variables in the Source

Programme window, the value will be shown.

• Continue stepping the program and observe the variables updating as the
program executes.

4.9. Setting breakpoints

Stepping through the simple programme above is easy enough, but for more
complex programmes it can take a long time to step through the entire programme.
Breakpoints are up to 3 defined locations in your programme where execution can
be suspended to allow you to examine variables, check voltages etc. You can then

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 23

execute the program and full speed with the Execute button, and the
programme will stop at the first breakpoint encountered. To set a breakpoint, do
the following: -

• Click on the line where you want to set the breakpoint, e.g. B = A – D

• Choose Debug/Toggle Breakpoint from the menu, or press F9, or right click
and choose Toggle Breakpoint from the popup menu. The selected line will
be bulleted to indicate the breakpoint and an entry will be made in the Break
debug window on the right

• Click Reset to reset the programme back to the start, then click
Execute to run the programme. You will see that the program stops at the
selected line.

• You can now examine the variables to confirm that the program has executed
correctly.

Note that the Break debug window includes two special breakpoints which are
enabled by default but you can turn them off if you wish: -

• Break on first FAIL. This can be useful when writing IC tests since you can
run the programme until the test fails, allowing you to quickly “home in” on
problems in your programme.

• Break at end of test (only available on Compact products). This causes
execution to stop at the end of the programme. This allows the final state of all
programme variables to be examined before the test completes.

To remove a breakpoint, click on the line where the breakpoint has been set and
choose Toggle Breakpoint again to remove it.

4.10. Debugging techniques

Debugging programmes is a complex skill that requires practice and experience.
Nevertheless there are some ground rules you can follow to help you avoid errors
in your programmes.

There are 3 types of errors that can occur in your programme: -

4.10.1. Compiler errors

Compiler errors occur if you mistype text or use incorrect syntax. These are easily
fixed as the PLIP compiler provides error messages and the syntax guide helps
you get the command right.

4.10.2. Run time errors

Run time errors are caused by illegal operations such as divide by zero which
cannot be detected by the compiler as it has no knowledge of the intended values
of variables in your programme. For example, if your programme includes the line
GAIN = OUTPUT / INPUT you should ensure that the value of INPUT cannot

contain zero. This could be done simply as follows: -

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 24

IF INPUT <> 0
 GAIN = OUTPUT / INPUT
END IF

If a run time error occurs, programme execution will stop and the cause of the error
will be displayed in the Result window at the bottom right.

4.10.3. Logical errors

These are the most common type of errors in the programme and also the most
difficult to find. The following techniques will help: -

• Single step your entire programme. This can be laborious but it will ensure
your programme executes according to plan. Use the Variables window and
the automatic mouse hover variable display to confirm that the variables have
the correct values.

Single stepping a BFL or AICT PLIP test which is connected to a
board (in-circuit) may result in extended backdriving times. During
normal test execution these times are very short, but may cause
damage to a board if allowed to occur when developing a test. For
this reason we recommend using an IC in the out of circuit adapter or
in an unconnected, powered socket during IC test program
development.

• Break up your programme into PROCEDURES with well-defined input and

output values, which can be tested in isolation. Once you have fully tested a

procedure, you can use Step Over to execute calls to it without stepping
into the procedure itself, which reduces the amount of stepping you need to
do.

• Consider what happens in your test if unusual circumstances are present. For
example, if you are reading a voltage from an IC pin, remember there may be
no power supply to the IC. A faulty IC may also give unusual voltages, which
may upset your programme.

• Ensure that you thoroughly understand the function of the IC you are testing.
You will be unable to write a functional test programme if you do not know how
the IC will react to input signals, so obtain an up to date data sheet for the
device.

• If your programme contains complex calculations, split them into several lines
using intermediate variables so you can follow the calculation while stepping.

• Ensure you are aware of the order of precedence of operators (see on line
syntax guide). For example, consider the programme sequence: -

A = -1
B = 5
CONDITION = A < 0 & B > 3

The & operator is a higher order than the relational operators < and >.

Therefore the expression is evaluated as: -

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 25

CONDITION = (A < (0 & B)) > 3 which is probably not what you

expect. To avoid confusion rewrite as: -

CONDITION = (A < 0) & (B > 3) which makes it clear what you are

trying to achieve.

• If your programme uses loops (e.g. DO WHILE), ensure that the loop

condition can eventually become false and your programme cannot get stuck
in the loop. For example, consider the following loop in an AICT or LMC
programme: -

DO WHILE VOLTAGE(OUTPUT) < 5
 DRIVE INCREMENTAL INPUT WITH 0.05
END DO

If the output voltage never exceeds 5V (which could happen, for example, if
the IC is faulty) the programme will remain in the loop and will get stuck. To
avoid this, try the following: -

* Set an execution limit for the loop
LOOP_LIMIT = 1000
* Adjust input voltage until output goes above 5V
DO WHILE (VOLTAGE(OUTPUT) < 5) & (LOOP_LIMIT > 0)
 DRIVE INCREMENTAL INPUT WITH 0.05
 * Count number of times we go round the loop
 LOOP_LIMIT = LOOP_LIMIT - 1
END DO

This is far more complex but ensures your program cannot get stuck in a loop.
If the loop executes 1000 times the LOOP_LIMIT variable will become zero

and the loop will exit. Once you are sure your programme is working correctly,
you can remove such error trapping code. Note that this uses the & logical

operator to combine 2 test conditions for the loop condition – ensure you use
the brackets as shown to ensure the expression is evaluated as you intend.

On the CMC or LMC you can use the Stop button to force a breakpoint in
a loop which is executing indefinitely.

• Use the DISPLAY command to show debugging information in the Display

Output window at the bottom right. For example in the above programme,
DISPLAY VOLTAGE(OUTPUT), VOLTAGE(INPUT) will show the

voltages at the input and output pins so you can see if they are as expected
before using them in subsequent calculations, and DISPLAY 1000 -

LOOP_LIMIT will show how many times your loop executed before exiting.

• When you have tested parts of your programme to your satisfaction, use
breakpoints to stop your programme execution after the tested parts so you
can then use stepping to test the remainder of the programme.

Further examples of common programme errors are given in the online syntax help.

CompactLink IC Library Manager Writing test programmes

Copyright 2006-2016 ABI Electronics Limited Page 26

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 27

5. Some common programming concepts
Although PLIP is a reasonably simple language to use, some of the concepts
involved in IC test programming can be quite complex. The basic principle behind
any IC test programme is quite simple: -

• Stimulate the inputs of the device under test with the correct logic levels or
analogue voltages.

• Check that the outputs of the device under test respond as expected to the
input signals.

• Ensure that the chosen sequence of input signals covers all aspects of device
operation.

However, this is not always as simple as it may seem. With the BFL and AICT
products test are carried out on devices in working, powered circuit boards. Some
inputs of the device under test may be hard wired to the supply rails or to each
other. Outputs of the device under test may be linked back to inputs of the same
device. Even on the CMC and LMC products where there are no external
influences to complicate the test, there still may be problems. To make your
programme as successful as possible, always try to meet these objectives before
your start: -

• Obtain a sample device of the type you wish to test.

• Obtain an up to date data sheet for the device.

• Start test development in an unconnected, powered IC socket before moving
on to an in-circuit test.

• When developing an in-circuit test, obtain a schematic diagram showing the
connections to the IC under test, or discover them using a continuity tester.

We will discuss some of these issues in this section.

5.1. Digital test programming

Digital test programming is easier than analogue test programming. The operation
of the devices is better defined and there is less mathematics involved in testing.
Digital tests can be written for the SYSTEM 8 BFL module and for the ChipMaster
Compact

Remember the basic operations in a digital IC test program, stimulate the inputs
and check the outputs. The following commands are provided in PLIP for digital
test programming. For full syntax and examples see the on-line help: -

Stimulus Commands Use
DRIVE Drive a logic level onto the input of

the IC under test
PULSE Pulse the input (L->H->L or H>L->H)

of the IC under test

Response Commands/Functions
CHECK THAT Check that the output of the IC under

test is in a specified logic state

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 28

CONFLICTS Check that the outputs of a tri-state
IC are not being driven by something
else

COMPARE Compare a group of IC outputs with a
specified value

RESPONSE() Return a value by reading the logic
states on a group of IC outputs

Other Commands
SET PULL STATE Set the 10k pull up/down voltage high

or low
INPUTS Define the inputs of the IC under test

5.1.1. Combinational devices – gates, buffers, multiplexers

Combinational logic devices are the simplest type of logic devices – the output
logic levels depend purely on the input logic levels, so your programme will
probably proceed as follows: -

• Specify the inputs of the IC under test with the INPUTS command

• Apply the desired logic levels to the inputs with the DRIVE command

• Check that the outputs respond correctly with the CHECK THAT command

However, as you will see later in the example for the 7400 QUAD NAND GATE
device, there are some traps you can fall in to, mainly concerned with automatic
circuit compensation discussed in section 5.3

When writing a test for a combinational logic device, ensure that you cover all
possible states to get the best test possible. For example, if you are testing a 4
input gate you will need 16 states to cover all combinations of the 4 inputs. This is
best achieved with a loop using the DO … WHILE construction to repeat the test

with different input states.

5.1.2. Sequential devices – counters, registers, latches

Sequential devices are far more complex, and in fact the vast majority of digital
devices are sequential. The device normally has one or more clock inputs, and the
outputs depend on both the current inputs and on the history of the inputs, so you
cannot just apply inputs and check the output response. For example, a 4 bit
counter can count from 0 to 15 before starting again at 0. If you just apply a pulse
to the clock input using the PULSE command, this will advance the outputs by 1

state, but unless your programme knows the initial state you cannot check whether
the new state after the clock pulse is correct.

To deal with this problem, there are a number of techniques depending on the type
of device: -

• If the device has a clear or reset function, test that first, as then the device will
be in a known state.

• If there is no clear or reset function, read the current state of the device
outputs using the RESPONSE() function and use that in your programme to

calculate the next state.

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 29

• Some device outputs may not be available externally (e.g. a counter may only
have a carry output and the actual counter outputs may not appear externally).
In this case you may have to clock the device many times until the carry
appears, so that you then know what state the device is in.

In accordance with the above, a typical sequence for a sequential device would be:
-

• Specify the inputs of the IC under test with the INPUTS command

• Get the device into a known state using a clear or reset input, or issue clock
pulses until a known state is reached

• Apply the desired logic levels to the inputs with the DRIVE command

• Apply one or more clock pulses depending on the nature of the device

• Check that the outputs respond correctly with the CHECK THAT command

Again, the problem is more complex for in-circuit testing. A device may have a
clear or reset pin but it may be hard wired so it is not accessible. A typical test will
use several of these techniques to achieve a successful result.

5.1.3. Tri-state devices – buffers, bus drivers

Both combinational and sequential devices may have tri-state outputs – these
outputs can be turned off or made high impedance by an enable input, so that
other devices on a board can drive the pins in a bus structured system. In out of
circuit testing this presents no problem, but with an in-circuit test you need to
ensure that the outputs of the device under test are not being driven by anything
else and can respond correctly to the inputs.

On the SYSTEM 8 BFL there are BDO (bus disable output) signals to achieve this
(see SYSTEM 8 documentation for further details) but PLIP provides the
CONFLICTS command to check that the outputs are free from interference. The

CONFLICTS command does not influence the test, but it provides a warning on

the result display that the device may fail the test. Using the CONFLICTS

command, a typical combinational tri-state device test sequence would be as
follows: -

• Specify the inputs of the IC under test with the INPUTS command

• Drive the enable or chip select input to turn off the tri-state outputs

• Use the CONFLICTS command to check that the outputs are properly turned

off

• Apply the desired logic levels to the inputs with the DRIVE command

• Check that the outputs respond correctly with the CHECK THAT command

For sequential devices with tri-state outputs similar principles apply.

5.1.4. LSI and complex devices

Testing complex high pin count devices such as CPUs and CPU peripherals is
difficult. In many cases, the device data sheet does not specify exactly how the
device responds to the inputs, and there may be minor differences in operation
between the same devices from different manufacturers. Some devices may

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 30

require minimum clock speeds to operate, which means single stepping is
impossible. In addition to all this, many devices are so complex that testing every
conceivable aspect of device operation may not be feasible because the test would
take too long.

Despite this, it is still possible to write tests for complex devices if a few general
principles are observed: -

• ICs usually fail because of voltage spikes, static pulses etc on the device pins,
so your test should try to ensure every pin is tested in both logic states even if
the entire device function cannot be tested

• Many devices need the same sequence of signals repeating many times
during a test (for example internal registers that need to be read or written to
configure the device operating mode). Use the PROCEDURE … END

PROCEDURE construction to write data to registers, so that it can be called

from several places in your programme

• If you cannot determine the exact response of the device outputs from the data
sheet, use the following technique: -

• Use DRIVE and/or PULSE commands to apply logic levels and clock

pulses to the inputs

• Use the DISPLAY command with the RESPONSE() function to read the

output response and display in the text output window in the
CompactLink debugger

• Once you have determined how the IC responds, include CHECK THAT

commands to test for the expected response

• If the device will not operate at slow speeds, use the debugger breakpoint
system in conjunction with the DISPLAY command to get debugging

information about the test

5.2. Analogue test programming

Analogue ICs, by their very nature, are more difficult to test than digital ICs.
Consequently analogue IC tests are often quite complex, even for very simple
components such as transistors and diodes. Analogue tests can be written for the
SYSTEM 8 AICT module and for the LinearMaster Compact.

The following commands are provided for analogue test programming: -

Stimulus Commands Use
DRIVE ABSOLUTE Drive a defined voltage onto the input

pin of the IC under test
DRIVE INCREMENTAL Change the voltage on the input pin

by the defined voltage
DRIVE OPENLOOP Drive a defined voltage onto the input

pin without any error compensation
RESTRICT (AICT only) Clamp the output pin to the specified

voltage
UNRESTRICT (AICT only) Remove the output clamp on the

specified pin

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 31

SOURCE (AICT only on special

channels)

Source the specified current to the
given pin

Response Commands/Functions
COMPARE Compare the voltage/current with a

specified value using a given
tolerance

CURRENT() (AICT only) Return the current from an output pin
which has been clamped by the
RESTRICT command

VOLTAGE() Return the voltage at a pin

Other Commands
INPUTS Define the inputs of the IC under test
SET FEEDBACK TO (LMC only) Configure the LMC feedback network

5.2.1. Using the DRIVE commands

The DRIVE ABSOLUTE command is the most common command for analogue

component stimulus. The specified voltage is applied to the input pin. The DRIVE

ABSOLUTE and DRIVE INCREMENTAL commands have error checking built in

to cope with situations where a pin cannot be driven or is shorted or linked to
another pin on the AICT – these conditions can be evaluated with the
LASTDRIVE() function (see on-line help) and used to control the flow of your

programme.

The DRIVE INCREMENTAL command is slightly different. This command

measures the voltage at the pin before changing it by the specified amount, so you
do not need to know the original voltage. For example, when checking the gain of
a circuit the actual voltages used are not that important as it is the ratio of them that
will give you the gain.

Note that the following 2 programme segments will give the same result: -

DRIVE ABSOLUTE INPUT TO VOLTAGE(INPUT) + 0.1
DRIVE INCREMENTAL INPUT BY 0.1

The first command measures the input voltage and then increases it by 0.1V. The
second command does this internally without first measuring the voltage.

The DRIVE OPENLOOP command is used in only a few situations (such as the

diode test described below). Normally, the DRIVE ABSOLUTE and DRIVE

INCREMENTAL commands have error checking built in to ensure that the correct

voltage is achieved in the presence of varying loads. The AICT output impedance
is 34 Ohms, so if a high current load is present the output voltage will drop. The
DRIVE ABSOLUTE and DRIVE INCREMENTAL commands recognise this and

boost the voltage to compensate for the drop, but the DRIVE OPENLOOP

command ignores this, which speeds up the programme operation. If you want to
measure the output current, this can be calculated by measuring the difference

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 32

between the output voltage programmed and the actual voltage achieved and
dividing the result by 34, as in the following example: -

VOUT = 1
DRIVE OPENLOOP INPUT TO VOUT
IOUT = ABS(VOUT – VOLTAGE(INPUT))/34

Here, the DRIVE OPENLOOP command is used to output 1V nominal to the pin.

The actual output voltage achieved is then measured and the absolute difference is
calculated between its value and the original value of 1V. The result is divided by
34 (the AICT output impedance) to give the output current.

5.2.2. Using the RESTRICT command

In normal circumstances, the same basic principles apply to developing an
analogue IC test: -

• Specify the inputs of the IC under test with the INPUTS command

• Apply the desired voltages to the inputs with the DRIVE ABSOLUTE or

DRIVE INCREMENTAL command

• Check that the outputs respond correctly with the COMPARE command

However, there some additional commands available on the AICT for extra types of
analogue tests which may be useful in certain circumstances. For example, a
voltage regulator by its very nature has an output voltage that never changes in
normal circumstances. You can still check its function without changing its output
voltage by measuring the magnitude and/or direction of current flow out of its
output pin. To do this, use the RESTRICT command to clamp the output to a

specified voltage, then use the CURRENT() function to measure the output

current. An example: -

* Specify parameters for the min/max currents, output
voltage and tolerance
PARAMETER MIN_CURRENT
PARAMETER MAX_CURRENT
PARAMETER SPEC_VOLTAGE
PARAMETER SPEC_TOL
* Measure the quiescent output voltage of the regulator
OUTPUT_VOLTAGE = VOLTAGE(OUTPUT)
* Check the output voltage using the specified
percentage tolerance
COMPARE OUTPUT_VOLTAGE WITH SPEC_VOLTAGE TOLERANCE
SPEC_VOLTAGE * SPEC_TOL
* Clamp the output to the measured voltage plus a
little bit
RESTRICT OUTPUT TO SPEC_VOLTAGE + 0.1
* The output current should now be close to zero as the
regulator turns off

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 33

COMPARE CURRENT(OUTPUT) WITH MIN_CURRENT TOLERANCE 0.05
* Now repeat with a lower clamp voltage
RESTRICT OUTPUT TO SPEC_VOLTAGE - 0.1
* The output current should now be non-zero as the
regulator turns on
COMPARE CURRENT(OUTPUT) WITH MAX_CURRENT TOLERANCE 0.05
UNRESTRICT OUTPUT

This quite complicated example introduces a number of concepts: -

• Firstly, parameters are used (see next section) to specify values used in the
test.

• The regulator output voltage is measured with the VOLTAGE() function and

compared with the specification voltage parameter using the COMPARE

command, using the percentage tolerance specified in the SPEC_TOL

parameter.

• The output is then clamped with the RESTRICT command to a voltage higher

than the specified voltage. The regulator should then turn off and its output
current will fall to a low value.

• The CURRENT() function is used to measure the output current and compare

it with the minimum current parameter.

• This is repeated with the output clamped below the specified voltage. The
regulator should then turn on and its output current will be high.

• Finally the clamp is turned off

The RESTRICT command automatically turns on the on the specified pin

regardless of whether this has been enabled by an INPUTS command.

Note that this is a simplified example. In practice, the effects of in-circuit
components may affect the results of the current measurements. You should
ensure your test is debugged on the actual board you intend to use with the
finished test to get your test working correctly.

5.2.3. Using parameters

Parameters are constants used only in AICT/LMC tests. They are initialised with
values in the Device Information window. This allows many devices with different
specifications to share the same test – for example, in the voltage regulator test
example in the previous section parameters are used for the output voltage,
tolerance, minimum and maximum currents. This allows the same test to be used
for voltage regulators with different output voltages.

To specify parameters, enter PLIP code in the Parameters box in the Device
Information window for the device under test. For the above example, the
parameters might be entered as follows: -

MIN_CURRENT = 0
MAX_CURRENT = 0.1
SPEC_VOLTAGE = 5
SPEC_TOL = 0.05

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 34

When the test is compiled, the given parameters are initialised to the values
entered, which can then be used in your programme rather than actual numbers,
allowing your test to be re-used.

Similar parameters can be used for test voltages and currents in most types of
analogue tests. For example, the forward voltage drop for a Schottky type diode
will be less than a normal silicon diode. A parameter can be used to set the
expected voltage drop, which can then be used in your test so that the same diode
test can be used for both types of diodes.

5.2.4. Using the SOURCE command

The AICT has 24 test channels, of which channels 1 to 3 are referred to as
“special” channels with an enhanced range of functions. The SOURCE command

can only be used with channels 1 to 3 and can source a current (rather than the
more usual voltage) to the pin. This is useful for several types of test for discrete
components such as transistors and diodes.

The SOURCE command automatically turns on the driver on the specified pin

regardless of whether this has been enabled by an INPUTS command.

Note that if the specified current is negative, the SOURCE command will actually

sink current instead of sourcing it.

Refer to the DIODE test example below for more information.

5.3. Automatic circuit compensation

Testing ICs in-circuit is one of the most difficult aspects of device test
programming. There are a number of ways in which IC inputs could be wired on a
PCB which influence your test strategy: -

• Devices can have unused inputs shorted to supply rails or linked to used
inputs

• A device output may be linked to an input of the same device

• Device inputs may be connected to mechanical switches are jumpers which
may or may not short the inputs0

Your test programme must allow for these situations if you are writing an in-circuit
test (e.g. for the BFL or AICT). The following PLIP functions are available to allow
you to handle this: -

Function Use
LASTDRIVE() Return true (1) if the last DRIVE or

PULSE command worked, otherwise
false (0)

LEVEL() Return the logic levels on driven
inputs

LINKED() Return true (1) if the given pins are
linked, otherwise return false (0)

SHORTED() Return true (1) if the pin is shorted to

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 35

either power rail, otherwise return
false (0)

CONFLICTS Check that the outputs of a tri-state
IC are not being driven by something
else

COMPARE Compare a group of IC outputs with a
specified value

RESPONSE() Return a value by reading the logic
states on a group of IC outputs

RESULT() Return a value (normally 0 = FAIL, 1
= PASS) representing the current test
result

SET RESULT TO Set the test result to PASS or FAIL,
overriding the current result

5.3.1. Compensation by splitting

Splitting the test programme into sections is used for multi gate devices where
there may be interconnections between gates in the same package. For example,
for a quad 2 input gate, each gate should be tested separately rather than testing
all gates at the same time. This is achieved by multiple use of the INPUTS

command as in the following example for a dual 4 input gate: -

INPUTS 1A,1B,1C,1D,2A,2B,2C,2D
INPUTS 1A,1B,1C,1D
DO GATE1_TEST
INPUTS 2A,2B,2C,2D
DO GATE2_TEST
END TEST

Note carefully the use of the INPUTS command in this example. In any IC tests,

the very first (and only the first) INPUTS command carries out extra tests on input

pins (checking for linked or shorted pins, checking drive levels etc) which do not
run on subsequent INPUTS commands. The results of these tests are important

(e.g. they are used in the LINKED() and SHORTED() functions) so they should

not be omitted. For this reason the very first INPUTS command in your

programme should specify ALL the device input pins, even if you only want to use a
subset of them as with the 2nd INPUTS command.

In this programme the two 4 input gates in the package are tested separately. If
the output of gate 1 was connected to an input of gate 2, for example, this will not
cause a problem because the inputs of gate 2 are not driven during testing of gate
1, and vice versa. Note that the actual test for each gate will probably require
further circuit compensation using one of the techniques described below.

5.3.2. Compensation by skipping

The simplest method of circuit compensation is to just miss out any parts of your
programme where the correct input signals could not be achieved. For example, in

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 36

the following program segment the programme is written to allow for the clear pin
being possibly connected to VCC in-circuit: -

SET <Q_OUTPUTS> = QA,QB,QC,QD
DRIVE (CLEAR) HIGH
PULSE (CLEAR) LOW
IF LASTDRIVE()
 CHECK THAT RESPONSE(<Q_OUTPUTS>) = 0
END IF

In this example which is part of a counter test, the programme is attempting to clear
the counter and check that all its outputs go low in the following sequence: -

• The 4 bit counter outputs QA to QD are defined as a pin group to simplify the

programme

• The clear pin (note the brackets indicating active low) is driven high to initialise
it

• The programme applies a low pulse to the clear pin to clear the counter
outputs

• The LASTDRIVE() function is used to see if the PULSE command worked

correctly

• If the PULSE worked, the outputs are tested to check they are all low,

otherwise the test is skipped

There are a couple of points to watch out for when using this method of circuit
compensation: -

• You should ensure that regardless of the connections that some tests are
actually carried out on the IC. If your programme is structured incorrectly it
may be possible for the entire testing of the IC to be skipped, so you get a
PASS result without actually testing anything!

• You should not rely on the results of a programme segment that may skip a
test. In the above example the counter may or may not be cleared depending
on the wiring of the clear pin, so you cannot assume the counter is cleared in
subsequent test programming

• The LASTDRIVE() function returns different values for AICT tests. Refer to

the on-line help for details.

In the above example the programme attempts to pulse the clear pin even though it
might be shorted. An alternative way to implement this would be: -

SET <Q_OUTPUTS> = QA,QB,QC,QD
IF NOT(SHORTED((CLEAR)))
 DRIVE (CLEAR) HIGH
 PULSE (CLEAR) LOW
 CHECK THAT RESPONSE(<Q_OUTPUTS>) = 0
END IF

This programme checks to see if the clear pin is shorted, and if so it just ignores it.
Note the brackets that are required because the clear pin is active low.

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 37

5.3.3. Compensation by adapting

A more rigorous approach to circuit compensation is to adapt the programme to the
prevailing circuit conditions, rather than just to skip sections of it. The procedure is
as follows: -

• Drive the inputs of the IC using the DRIVE command as usual

• Read the logic levels on the inputs using the LEVEL() function

• Calculate the expected response of the IC outputs

• Check that the outputs respond as calculated

An example for a 2-input NAND gate (from a QUAD package) would be: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B
INPUT_STATE = 0
DO WHILE INPUT_STATE <= 3
 DRIVE [1A,1B] WITH INPUT_STATE
 IF LEVEL([1A,1B]) = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 INPUT_STATE = INPUT_STATE + 1
END DO

In this programme the variable INPUT_STATE is used for the input (stimulus)

data for the IC, but this data is never used in checking the outputs. Instead, the
actual logic levels present on the inputs are used to decide what state the output
should be in. In this way the NAND gate is correctly tested regardless of the
connections to the input pins.

Note that the LEVEL() function is similar to the RESPONSE() function with one

important difference. The RESPONSE() function is designed for reading IC

outputs (along with the CHECK THAT command) and as such includes a text for

mid-level outputs (voltage not within valid threshold levels), which is a common
fault. However, when driving the inputs of an IC there may be mid-level voltages
present depending on circuit conditions, so the LEVEL() function is provided to

read the IC inputs and ignore any mid-levels to prevent your test from failing.

5.3.4. Compensation by trying

This method of circuit compensation is a last resort method, which can be used, if
the above methods do not work for any reason. The idea is to use a test procedure
to determine whether the IC can be tested in a particular way or not using the
following principle: -

• Remember the current result of the test so far using the RESULT() function

• Set the result to PASS using the SET RESULT TO command

• Try a test procedure and check the result of it using the RESULT() function

CompactLink IC Library Manager Programming concepts

Copyright 2006-2016 ABI Electronics Limited Page 38

• If the result is FAIL, restore the previously remembered result so that the
procedure tried is ignored

An example of this is: -

* Remember current result
CURRENT_RESULT = RESULT()
* Set to PASS so we can try a test
SET RESULT TO PASS
* Try the test
DO TRY_TEST
* See whether the test failed
IF RESULT() = 0
 *Try failed, restore the previous result to ignore
the test
 IF CURRENT_RESULT = 0
 SET RESULT TO FAIL
 ELSE
 SET RESULT TO PASS
 END IF
END IF

A well-designed programme will very rarely need to use this type of construction,
but it is included here for completeness. In analogue testing, for example, this
technique can be used to try testing a component such as a diode both ways
round, so that the user does not have to worry about applying the test probes in the
correct way.

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 39

6. Example of a 7400 digital IC test programme for the
BFL/CMC

Now we are ready to write a complete IC test programme. In this example we will
describe how we would write a PLIP test programme for a 7400 QUAD NAND
GATE IC, and in this way introduce you to the concepts involved in test
programming. The programme can be executed on either the BFL or CMC with
one minor change.

6.1. Defining the IC inputs

The first step in any test programme is to define the input pins of the IC under test,
so that the test target product can switch on the drive on these channels. This is
achieved using the INPUTS command. Enter the command line into the editing

window as follows: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B

This command tells CompactLink that the pins listed are all inputs to the IC, and
any pins not listed are assumed to be outputs. Note that for test programming
purposes power supply pins are assumed to be outputs from the IC under test.
You do not need to refer to the pin numbers directly (although you can do so if you
wish by using the syntax PIN 1, PIN 3 etc.) because the compiler will substitute

the correct numbers from the device information later.

When CompactLink or the target product executes this command line, it will
perform various checks on the given pins prior to continuing with the test
(depending on the target product). For example, on the BFL it will check the
connections between the pins or shorts between pins and either supply rail, and it
will check for the presence of changing signals which may interfere with the
outcome of the test. On both BFL and CMC it will check that all the given input
pins can be properly driven with valid logic levels. All these checks take place on
the first, and only the first, INPUTS command line in your programme, so the first

INPUTS command should define all the inputs.

At first sight we could now go on to drive the input pins with a suitable test pattern
and check the output, but there is a very important factor which has to be
considered first when testing ICs in circuit on the BFL, but this can be ignored on
the CMC. This is AUTOMATIC CIRCUIT COMPENSATION, which is one of the
most difficult aspects of in-circuit test programming. A 7400 QUAD NAND GATE
IC may be connected in many different ways by hard wiring its inputs, and a good
test programme will allow for all these connections by adapting itself accordingly.
PLIP contains all the commands and functions you require to do this, but it is up to
you to include these in your programme. Consider a situation where the output of
gate 1 of the 7400 IC is connected to the input of gate 2 in the same IC - we would
then have a problem, because the system would be driving the gate 2 input,
thereby preventing the gate 1 output from responding to the test signals. The
solution to this is to enter a second INPUTS command, this time only referencing

the inputs of the gate being tested. The other inputs will then not be driven,

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 40

ensuring that they will not interfere with the output of the gate under test if they
should be connected to it. Thus the programme now looks like this: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B

6.2. Simple test for a logic NAND gate

Now we are ready to test the first logic gate in the IC, and to do this we need to
drive both inputs with all four possible states according to the truth table for a
NAND gate, and check that the output responds accordingly. We could do this with
the following programme segment: -

DRIVE 1A LOW, 1B LOW
CHECK THAT 1Y IS HIGH
DRIVE 1A HIGH, 1B LOW
CHECK THAT 1Y IS HIGH
DRIVE 1A LOW, 1B HIGH
CHECK THAT 1Y IS HIGH
DRIVE 1A HIGH, 1B HIGH
CHECK THAT 1Y IS LOW

6.3. Logic NAND gate test with BFL circuit compensation

The above programme would correctly test the 2 input NAND gate according to its
truth table and indeed would be sufficient for use on the CMC, but it is not very
versatile. Again, on the BFL the problem is AUTOMATIC CIRCUIT
COMPENSATION – if you are writing a CMC programme this section is not
applicable as you are testing out of circuit only. The above programme assumes
that both inputs pins can be driven with all 4 input combinations, but consider for
example if the gate is wired as an inverter by connecting its two inputs together. In
this case only the first and last DRIVE/CHECK combinations would work, but the

middle two would fail because the pins are wired together. PLIP provides the
LASTDRIVE() function to overcome this. Consider the following improvement to

the above programme segment: -

DRIVE 1A LOW, 1B LOW
IF LASTDRIVE()
 CHECK THAT 1Y IS HIGH
END IF
DRIVE 1A HIGH, 1B LOW
IF LASTDRIVE()
 CHECK THAT 1Y IS HIGH
END IF
DRIVE 1A LOW, 1B HIGH
IF LASTDRIVE()
 CHECK THAT 1Y IS HIGH
END IF

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 41

DRIVE 1A HIGH, 1B HIGH
IF LASTDRIVE()
 CHECK THAT 1Y IS LOW
END IF

This introduces 2 new programming concepts, IF decisions and FUNCTIONS.

The IF ... END IF block is a construction which allows the instructions

contained within it to be executed only if a certain condition is true, otherwise they
will be skipped. In this case, the condition is evaluated by the LASTDRIVE()

function. In PLIP, a FUNCTION is a pre-defined operation or calculation that
returns a value to your programme. This value may be a numeric answer or a
simple TRUE/FALSE result, as in this case. The LASTDRIVE() function provides

a TRUE result if the last drive command succeeded, and a FALSE result if it did
not. In this way, the output of the IC in the above programme will only be checked
if the inputs were driven with the correct values, otherwise the output state will be
ignored. In this way the above programme will operate regardless of the wiring of
the two inputs pins of the gate under test.

Notice that the programme lines within the IF ... END IF blocks are indented

(using spaces or tabs). This makes it easier to follow the programme flow (visually)
and makes programmes more readable.

6.4. Improved logic NAND gate test with BFL circuit
compensation and looping

Whilst the above programme will work, there is a more compact way of achieving
the same result using another programming construction, the DO WHILE ...

END DO construction. This is a commonly found construction allowing blocks of

programme code to be repeated until a condition is true. Consider the following
programme segment: -

DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 IF LEVEL([1A,1B]) = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

This is more complex and introduces several other programming concepts. Firstly,
we have now defined a variable, called DATA, which is initialised to the value 0 by

the first line in the segment. Variables in PLIP are stored in floating point format
and can have values ranging from -32767e-99 to +32767e+99. The variable name
itself can have up to 30 alphanumeric characters including underscores, but must
begin with a letter.

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 42

The second line contains a DO WHILE condition. All the programme lines in

between the DO WHILE and END DO commands will be executed repeatedly until

the condition is false. It follows therefore that the programme must contain code to
change the condition otherwise the programme will stick in an endless loop! In this
case, the condition is that the value of DATA must be less than or equal to 3 for the

following programme lines to be executed. Also here, on line 3 we have introduced
a modified form of the DRIVE command, using square brackets ([]) to group

together the two input pins. This form of the DRIVE command allows a numeric

value to be driven in binary form (i.e. 1 bit at a time) onto the pins contained in the
command. In this case, this means that bit 0 of the variable DATA is driven onto

pin 1A, and bit 1 is driven onto pin 1B.

The fourth line contains the LEVEL() function. This is another function used to

implement AUTOMATIC CIRCUIT COMPENSATION on the BFL as an alternative
to the LASTDRIVE() function mentioned earlier. The LEVEL() function returns

the binary value of the actual data driven onto the pins enclosed in the brackets, so
that you can test or use this value in your programme. If you are writing a CMC
test you can use the input variable DATA instead of the LEVEL() function as the

inputs cannot be shorted or linked in an out of circuit test. In this case, we are
testing the binary value of the logic levels of the input pins, so that we can decide
(using the IF ... ELSE ... END IF construction) which state to look for on

the output pin. You will see that the above programme correctly tests the output
pin according to the truth table for a NAND gate. Note here that we have
introduced the ELSE command as part of the IF ... ELSE ... END IF

construction. The command lines following ELSE and before END IF will be

executed if the IF condition is false.

Finally, after one run through the test programme the value of DATA is incremented

by 1, and the END DO command causes execution to return to the DO WHILE

command line and repeat the entire programme section. This will continue until the
value of DATA is 4, when execution will continue after the END DO command line.

Notice in both the above two programme segments that we have indented, by 4
spaces (or a tab), the code following an IF or a DO WHILE statement, but the

relevant ELSE, END IF and END DO commands revert to the original column on

the display. This is not necessary for your programme to work, but it improves the
readability of your programme particularly when DO WHILE ... END DO or IF

... ELSE ... END IF blocks are nested inside each other. We suggest you

get into the habit of doing this when you write your programmes.

6.5. Complete programme for logic NAND gate

The complete BFL programme to test the first gate in the package now looks like
this: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B
DATA = 0

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 43

DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 IF LEVEL([1A,1B]) = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

On the CMC, the programme would look like this as the LEVEL() function is not
required: -

INPUTS 1A,1B,2A,2B,3A,3B,4A,4B
INPUTS 1A,1B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 IF DATA = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

It would be a good idea at this stage to test the programme with the debugger to
ensure that it functions as expected, before going on to test the other three gates in
the package. In this way, if any mistakes are found they can be corrected before
continuing with the programme entry. However, for completeness, we will now give
the complete programme for all 4 gates in the package. You can use the text editor
copy and paste to quickly copy the above block 3 times, then all you need to do is
change the pin names for the remaining three gates. The complete programme is
as follows. Note that we have added comment lines (beginning with *) to make the

programme more readable, and we have also introduced the END TEST

command to mark the end of the programme. Also, if you are writing a CMC
program the LEVEL() functions should be replaced with the variable DATA as

explained above: -

* TEST PROGRAMME FOR 7400 QUAD NAND GATE IC

* DEFINE ALL INPUT PINS
INPUTS 1A,1B,2A,2B,3A,3B,4A,4B

* DEFINE INPUTS FOR GATE 1
INPUTS 1A,1B

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 44

* TEST ALL 4 COMBINATIONS OF INPUTS
DATA = 0
DO WHILE DATA <= 3
 DRIVE [1A,1B] WITH DATA
 * GET EXPECTED OUTPUT ACCORDING TO DRIVE LEVELS
 IF LEVEL([1A,1B]) = 3
 CHECK THAT 1Y IS LOW
 ELSE
 CHECK THAT 1Y IS HIGH
 END IF
 * NEXT VALUE OF DATA INPUTS
 DATA = DATA + 1
END DO

* DEFINE INPUTS FOR GATE 2 AND REPEAT ABOVE
INPUTS 2A,2B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [2A,2B] WITH DATA
 IF LEVEL([2A,2B]) = 3
 CHECK THAT 2Y IS LOW
 ELSE
 CHECK THAT 2Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

* REPEAT FOR GATE 3
INPUTS 3A,3B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [3A,3B] WITH DATA
 IF LEVEL([3A,3B]) = 3
 CHECK THAT 3Y IS LOW
 ELSE
 CHECK THAT 3Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

* REPEAT FOR GATE 4
INPUTS 4A,4B
DATA = 0
DO WHILE DATA <= 3
 DRIVE [4A,4B] WITH DATA

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 45

 IF LEVEL([4A,4B]) = 3
 CHECK THAT 4Y IS LOW
 ELSE
 CHECK THAT 4Y IS HIGH
 END IF
 DATA = DATA + 1
END DO

END TEST

If you have not already keyed in this programme we suggest you do it now. The
programme is also included in the test 7400CMC or 7400BFL which are included
as sample user devices in the database supplied with the software. After entering

the programme, click the Save Test button on the toolbar to save it.

The above is a very simple example of a test programme, but it does show some of
the main features of the language.

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 46

7. Example of a diode analogue test programme for
the AICT

The following programme is identical to that in the standard library for diode tests.
We suggest you paste this programme into a user diode device test and use the
debugger to establish exactly how the programme works.

The test uses a variety of techniques to get the correct result and simplify operation
for the user: -

• A parameter is used for the forward voltage so that the test can be used for
different types of diode

• The INPUTS command with no arguments is used because the diode does

not have inputs in the conventional sense.

• The procedure DIODE_SHORT uses the RESTRICT and SOURCE

commands to measure the voltage across the diode (in both directions) with a
specified current. If the voltage is too low (corresponding to a 10 Ohms
impedance in this example), the programme decides the diode is shorted and
the test fails

• Assuming the diode is not shorted, the procedure DIODE_RAMP is used to

detect the voltage at which the diode turns on. This is carried out twice with
the connections reversed, so the user does not need to know how to apply the
probes

• The DIODE_RAMP procedure works as follows: -

• In a loop, the DRIVE OPENLOOP (see on-line help) command is used to

apply a gradually increasing voltage (initially 0.1V) to the anode with the
cathode clamped to 0V

• The diode current is measured with the CURRENT() function at the

cathode pin

• The voltage across the diode is measured

• The AICT output current is measured by finding the difference between
the voltage output and the voltage across the diode. Dividing this by the
AICT output impedance (34 Ohms) gives the output current, which is
checked for an excessive value.

• The change in the output voltage for this step is calculated. If this change
is less than a small value (18.75mV) this is recorded

• If the voltage does not change for 3 steps round the loop, this is defined
as the turn on voltage which is recorded by setting CLAMPED to 1 and the

loop exits

• If the diode voltage exceeds the maximum forward voltage parameter, the
loop exits as this is an error

• The output voltage is increase by 75mV and the above procedure repeats
provided that the output voltage has not reached a pre-defined limit

• Once the clamped condition is reached, the diode parameters are
calculated

• If the DIODE_RAMP procedure passed, the test is complete and the diode

parameters are displayed

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 47

 The complete test for the diode is as follows: -

*Test for a small signal diode

*Looks for short circuit faults

*Checks diode can be forward biased and measures Vf

*Reverse (leakage) test not practical in circuit.

PARAMETER VFMAX

*Test parameters

*max drive voltage

V_LIMIT = 11.99

*maximum output current

IOUT_MAX = 120e-3

*voltage step for diode ramp test

STEP = 0.075

*minimum differential test current

MINCURRENT = 2.5e-3

*test current for short circuit

ID1 = 20e-3

*Returned test parameters

VF = 0

VDIODE = 0

*Global variables

TEST_PASS = 0

CLAMPED = 0

SHORT = 0

RD = 1e6

IF1 = 0

IF2 =0

ID = 0

*Test start **

INPUTS

*initialise test in first direction

ANODE_PIN = ANODE

CATHODE_PIN = CATHODE

*check for short circuit diode first

DO DIODE_SHORT

IF SHORT = 1

 *force result fail

 SET RESULT TO FAIL

 DISPLAY "Short circuit diode junction", NEWLINE

 TEST_PASS = 0

ELSE

 DO DIODE_RAMP

 IF CLAMPED = 1

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 48

 TEST_PASS = 1

 *diode detected, display results

 DISPLAY "Diode detected", NEWLINE

 DISPLAY "Anode = pin ", ANODE_PIN, NEWLINE

 DISPLAY "Cathode = pin ", CATHODE_PIN, NEWLINE

 DISPLAY "Vf = ", ROUND(VF,3), NEWLINE

 DISPLAY "Rd = ", ROUND(RD,3), " Ohms", NEWLINE

 DISPLAY "@ If = ",ROUND(ID,2), NEWLINE

 END IF

 *now test other way

 CATHODE_PIN = ANODE

 ANODE_PIN = CATHODE

 DO DIODE_RAMP

 IF CLAMPED = 1

 TEST_PASS = 1

 *display results

 DISPLAY "Diode detected", NEWLINE

 DISPLAY "Anode = pin ", ANODE_PIN, NEWLINE

 DISPLAY "Cathode = pin ", CATHODE_PIN, NEWLINE

 DISPLAY "Vf = ", ROUND(VF,3), NEWLINE

 DISPLAY "Rd = ", ROUND(RD,3), " Ohms", NEWLINE

 DISPLAY "@ If = ",ROUND(ID,2), NEWLINE

 END IF

 IF TEST_PASS = 0

 *force result fail

 SET RESULT TO FAIL

 END IF

END IF

END TEST

PROCEDURE DIODE_SHORT

*Check for short circuit diode junction

*(Defined as impedance less than 10 ohms)

*Calculate 10 Ohm voltage drop

VMIN = ID1 * 10

RESTRICT CATHODE_PIN TO 0

*source current to anode

SOURCE ID1 TO ANODE_PIN

*measure voltages across the diode

VA1 = VOLTAGE(ANODE_PIN)

VC1 = VOLTAGE(CATHODE_PIN)

VF1 = ABS(VA1 - VC1)

IF VF1 > VMIN

 *impedance too high, indicate not a short

 SHORT = 0

ELSE

 *possible short, check in other direction

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 49

 INPUTS

 RESTRICT ANODE_PIN TO 0

 *source current to anode

 SOURCE ID1 TO CATHODE_PIN

 *measure voltages across the diode

 VA1 = VOLTAGE(ANODE_PIN)

 VC1 = VOLTAGE(CATHODE_PIN)

 VF1 = ABS(VC1 - VA1)

 IF VF1 > VMIN

 *impedance too high, indicate not a short

 SHORT = 0

 ELSE

 *diode is short circuit

 SHORT = 1

 END IF

END IF

INPUTS

END PROCEDURE

PROCEDURE DIODE_RAMP

ERROR = 0

SINCE_CHANGE = 0

*start voltage

VOUT = 0.1

RESTRICT CATHODE_PIN TO 0

VLAST = 0

DO WHILE ERROR = 0

 *drive new open loop voltage

 DRIVE OPENLOOP ANODE_PIN TO VOUT

 *measure diode current

 IF1 = ABS(CURRENT(CATHODE_PIN))

 *measure actual voltage

 V_ANODE = VOLTAGE(ANODE_PIN)

 V_CATHODE = VOLTAGE(CATHODE_PIN)

 VACTUAL = V_ANODE - V_CATHODE

 *check for excessive current

 IF ((VOUT - VACTUAL) /34) > IOUT_MAX

 *current excessive, stop ramp

 INPUTS

 ERROR = 1

 CLAMPED = 0

 END IF

 *calculate voltage change and compare to initial change

 VCHANGE = VACTUAL - VLAST

 IF VCHANGE < (STEP/4)

 SINCE_CHANGE = SINCE_CHANGE + 1

 ELSE

 SINCE_CHANGE = 0

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 50

 END IF

 *save latest voltage

 VLAST = VACTUAL

 *if no output voltage changes for 3 steps, assume clamped

 IF SINCE_CHANGE > 2

 CLAMPED = 1

 VF1 = VACTUAL

 *and stop the test

 ERROR = 1

 END IF

 *check in case maximum diode voltage is exceeded

 IF VACTUAL > VFMAX

 ERROR = 1

 CLAMPED = 0

 END IF

 *increment output voltage

 VOUT = VOUT + STEP

 *check output voltage in case limit is exceeded

 IF ABS(VOUT) > V_LIMIT

 VOUT = V_LIMIT

 ERROR = 1

 CLAMPED = 0

 END IF

END DO

*Measure resistance if clamped

IF CLAMPED = 1

 *drive new open loop voltage (5mA increment)

 VOUT = VOUT + 0.17

 IF ABS(VOUT) > V_LIMIT

 VOUT = V_LIMIT

 END IF

 DRIVE OPENLOOP ANODE_PIN TO VOUT

 *measure diode current

 IF2 = ABS(CURRENT(CATHODE_PIN))

 *measure actual voltage

 V_ANODE = VOLTAGE(ANODE_PIN)

 V_CATHODE = VOLTAGE(CATHODE_PIN)

 VF2 = V_ANODE - V_CATHODE

 *calculate impedance

 DO CALCULATE_R

 *calculate average diode drop

 VF = (VF1 + VF2)/2

 *calculate average test current

 ID = (IF1 + IF2)/2

END IF

INPUTS

END PROCEDURE

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 51

PROCEDURE CALCULATE_R

*Calculate dynamic impedance

IF (IF2 - IF1) > MINCURRENT

 RD = (VF2 - VF1) / (IF2 - IF1)

ELSE

 RD = 1e6

END IF

END PROCEDURE

8. Example of an operational amplifier analogue test
programme for the LMC

The following programme is designed for an LM324 quad operational amplifier test
on the LinearMaster. We suggest you paste this programme into a user LM324
device test and use the debugger to establish exactly how the programme works.

The test uses a variety of techniques to get the correct result: -

• The test relies on a mid rail voltage for correct operation. Since the test
program is not aware of the actual supply voltage used for the test, the mid rail
voltage is measured at the start of the test using the LMC feedback network.

• The test uses PARAMETERS for common mode range, saturation voltages
and tolerances. This allows the same test to be used for different quad op
amp devices.

• The INPUTS command with no arguments is used to turn off all output drivers.

• Variables are used for pin names so that procedures TEST_OPEN_LOOP,

TEST_BUFFER and TEST_GAIN2 can be used for all 4 op amps in the

package

• In the open loop test, a ground resistor is used to establish a mid rail voltage
on the inverting input. The non-inverting input is then driven by a small voltage
either side of this to make the output respond. The DISPLAY command is

used to show the output saturation voltages achieved. The outputs are tested
against the saturation voltage parameters, then the COMPARE command is

used to force a test fail if the voltages are incorrect.

• In the buffer test, a feedback resistor is used to configure the op amp to have
unity gain. The non-inverting input is then driven by a gradually increasing
voltage and the output is checked at each stage using the COMPARE

command.

• In the gain2 test, the feedback network is used to configure the op amp to
have a gain of 2. The non-inverting input is then driven by a gradually
increasing voltage and the output is checked at each stage using the
COMPARE command. Note that the difference between the input/output

voltages and mid rail voltage is used in the comparison.

* LM324LMC

* Test for LM324 quad op amp on LinearMaster Compact

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 52

* Tested in open loop, unity gain and gain of 2

* Define parameters

PARAMETER VCMRNEG

PARAMETER VCMRPOS

PARAMETER VSATNEG

PARAMETER VSATPOS

PARAMETER BUFFERTOL

PARAMETER GAIN2TOL

* Define variables

VIN = 0

VMID = 0

VSUPP = 0

VOUT = 0

* First measure mid rail voltage by following procedure

* 1) Turn off all pins

* 2) Enable the 100R pseudo ground resistor on an input

* 3) Measure the voltage at this pin and save

* Turn all pins off

INPUTS

* Enable 100R ground R on INV1 and no feedback R

SET FEEDBACK TO OUTPUT1, INV1, FB_OFF, GND_100R

* Measure the voltage on INV1 to use for rest of test

VMID = VOLTAGE(INV1)

* Measure the supply voltage

VSUPP = VOLTAGE(V+)

* Set up pins for op amp 1

INPUT_INV = INV1

INPUT_NINV = NINV1

OUTPUT = OUTPUT1

INPUTS NINV1

* Test op amp 1 in open loop mode

DO TEST_OPEN_LOOP

* Test op amp 1 in buffer mode (unity gain)

DO TEST_BUFFER

* Test op amp 1 in gain of 2 mode

DO TEST_GAIN2

* Set up pins for op amp 2

INPUT_INV = INV2

INPUT_NINV = NINV2

OUTPUT = OUTPUT2

INPUTS NINV2

* Test op amp 2 in open loop mode

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 53

DO TEST_OPEN_LOOP

* Test op amp 2 in buffer mode (unity gain)

DO TEST_BUFFER

* Test op amp 2 in gain of 2 mode

DO TEST_GAIN2

* Set up pins for op amp 3

INPUT_INV = INV3

INPUT_NINV = NINV3

OUTPUT = OUTPUT3

INPUTS NINV3

* Test op amp 3 in open loop mode

DO TEST_OPEN_LOOP

* Test op amp 3 in buffer mode (unity gain)

DO TEST_BUFFER

* Test op amp 3 in gain of 2 mode

DO TEST_GAIN2

* Set up pins for op amp 4

INPUT_INV = INV4

INPUT_NINV = NINV4

OUTPUT = OUTPUT4

INPUTS NINV4

* Test op amp 4 in open loop mode

DO TEST_OPEN_LOOP

* Test op amp 4 in buffer mode (unity gain)

DO TEST_BUFFER

* Test op amp 4 in gain of 2 mode

DO TEST_GAIN2

END TEST

PROCEDURE TEST_OPEN_LOOP

 * Test op amp in open loop mode as follows

 * 1) Connect ground resistor only to inverting input

 * 2) Apply small +ve voltage (referred to mid rail)

 * 3) Check that the output saturates high

 * 4) Repeat with a small negative voltage

 * 5) Check that the output saturates low

 * Set up the ground resistor on the inverting input

 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_OFF, GND_100R

 * Output a small positive voltage

 DRIVE ABSOLUTE INPUT_NINV TO VMID + 0.1

 * Measure the output voltage

 VOUT = VOLTAGE(OUTPUT)

 DISPLAY "Vsathigh=",VOUT,"V",NEWLINE

 * Check if Vout is too low

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 54

 IF VOUT < VSUPP - VSATPOS

 * Force a voltage too low fail on the output pin

 COMPARE VOLTAGE(OUTPUT) WITH VSUPP TOLERANCE 0

 END IF

 * Output a small negative voltage

 DRIVE ABSOLUTE INPUT_NINV TO VMID - 0.1

 * Measure the output voltage

 VOUT = VOLTAGE(OUTPUT)

 DISPLAY "Vsatlow=",VOUT,"V",NEWLINE

 * Check if Vout is too high

 IF VOUT > VSATNEG

 * Force a voltage too high fail on the output pin

 COMPARE VOLTAGE(OUTPUT) WITH 0 TOLERANCE 0

 END IF

END PROCEDURE

PROCEDURE TEST_BUFFER

 * Test op amp in unity gain mode as follows

 * 1) Connect 1k from output to inverting input

 * 2) Apply minimum voltage

 * 3) Check that the output follows

 * 4) Repeat with stepping voltage up to maximum

 * Set up the feedback resistor on the inverting input

 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_1K, GND_OFF

 * Start testing with Vin at bottom of CM range

 VIN = VCMRNEG

 * Repeat with increasing values of VIN in 1V steps

 DO WHILE VIN < VSUPP - VCMRPOS

 * Drive the input and measure the output

 DRIVE ABSOLUTE INPUT_NINV TO VIN

 VOUT = VOLTAGE(OUTPUT)

 * Display the results for debugging purposes

 DISPLAY "Vin=",VIN,"V"," Vout=",VOUT,"V",NEWLINE

 * Compare output with input voltage

 COMPARE VOUT WITH VIN TOLERANCE 0.3

 VIN = VIN + 1

 END DO

END PROCEDURE

PROCEDURE TEST_GAIN2

 * Test op amp in gain of 2 mode as follows

 * 1) Connect 1k from output to inverting input

 * 2) Connect 1k from inverting input to ground

 * 3) Apply minimum voltage

 * 3) Check that the output follows

 * 4) Repeat with stepping voltage up to maximum

CompactLink IC Library Manager Examples

Copyright 2006-2016 ABI Electronics Limited Page 55

 * Set up feedback/ground resistors on inverting input

 SET FEEDBACK TO OUTPUT, INPUT_INV, FB_1K, GND_1K

 * Start testing at -1V (referred to mid rail)

 VIN = VMID - 1

 * Repeat with increasing values of VIN in 0.5V steps

 DO WHILE VIN <= VMID + 1

 * Drive the input and measure the output

 DRIVE ABSOLUTE INPUT_NINV TO VIN

 VOUT = VOLTAGE(OUTPUT)

 * Display the results for debugging purposes

 DISPLAY "Vin=",VIN,"V"," Vout=",VOUT,"V",NEWLINE

 * Compare output with gain * diff input voltage

 COMPARE VOUT WITH VMID+2*(VIN-VMID) TOLERANCE 0.3

 VIN = VIN + 0.5

 END DO

END PROCEDURE

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 56

9. PLIP command and function reference

9.1. Introduction

Full details of all PLIP commands and functions are included in the software so you
can get help on syntax at any time while developing your programme. To access
this on line syntax help, do the following: -

• Click in the Source Programme window in the word you wish to look up

• Choose Help/Syntax from the menu, or right click and choose Syntax Help
from the popup menu, or press F1

• If the selected word appears in several topics, choose the most applicable
topic from the list displayed

• The PLIP Syntax Guide will now be displayed

The following words/phrases are used throughout the command/function
descriptions: -

expression - a valid expression containing numbers, variables, arithmetic and/or
logical operators and functions

condition - an expression that evaluates to either 0 (FALSE) or 1 (TRUE). Usually
the expression will include a relational operator (e.g. =, <= etc.) but any expression
which gives the result 0 or 1 will work.

pin name - a text string of up to 8 characters giving the name of an IC pin as
defined in the IC definition database. Note that you can use the default strings PIN
1, PIN 2 etc. if for some reason you do not wish to use the defined pin names. If
the IC pin definition contains several pins with the same name, only the first one
will be used by the compiler in programs. The remaining pins MUST be referenced
by the text PIN 1, PIN 2 etc..

pin name list - a text string containing a list of up to 8 pin names defined as above.
Usually the pin name list will be contained in square brackets [].

pin group - a text string that is used as an identifier to refer to a group of pins that
are logically connected with each other. The pin group is identified by the use of
angular brackets <>. The text string can have a maximum of 30 alphanumeric
characters and can contain underscores.

procedure name - a text string which is used as an identifier to refer to a
procedure defined in your program. The text string can have a maximum of 30
alphanumeric characters and can contain underscores.

... - this symbol is used in some of the examples to indicate that other, non-
specified, program lines are present on these lines.

variable name - a text string that is used as an identifier to refer to a variable
defined in your program. The text string can have a maximum of 30 alphanumeric
characters and can contain underscores. It can also refer to the pre-defined array
using the string ARRAY[].

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 57

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 58

10. Troubleshooting and support
If you suspect your CompactLink software is not functioning correctly, send an
email to support@abielectronics.co.uk or your local dealer with full details of the
apparent problem. We will respond as soon as possible with advice.

Many apparent faults can easily be solved by a software update, which can be
downloaded free of charge in from www.abielectronics.co.uk.

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 59

11. Appendices

11.1. Library parameter reference

This section contains detailed information about the meaning of the various
information entries for the CompactLink device library. All the device parameters
are listed in alphabetical order with a brief explanation

Entry Explanation Limits
Auto Clip Position BFL/AICT only. Ticked if automatic clip

positioning is possible, usually when the
device has at least 1 power and 1 ground
pin

Class Functional classification of the device
Connections test Ticked if the connections test (shorts, liked

pins etc) is enabled for the device on the
BFL or AICT

Current test The currently selected functional test for
the device

Date Date of last change to device. Not used
by system

Display Note Ticked if there is a note to display for this
device/target combination

External Comps Not on AICT. Ticked if the test for this
device requires external components (e.g.
monostable ICs)

Family Logic family of device. New devices are
all in the USER family

Function Brief description of device function 100 characters max
Functional test Ticked if the functional test is enabled for

the device on this target product

Ground Clip BFL only. Ticked if the device may require
the ground clip (see SYSTEM 8
help/manual)

High threshold Voltages above this value are defined as
valid HIGH logic levels

-10V to +10V

Include device in
XXX library

Ticked if the device is specified for testing
on this target product

Include in Search Not on AICT. Ticked if this device is to be
included in the target search (IC identifier)
function. If the test takes a long time you
may want to exclude it to speed up the
search

Input Load Check Not on AICT. Ticked if the device inputs
should be checked for excessive loading.
This is the normal case but some good
ICs have excessive loading (e.g. Some
ULN series ICs)

Language When a note is present, this specifies the
language to be used

Last Compiled Date of last compilation of the test.
Automatically updated by the system

Last Modified Date of last modification to test.

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 60

Automatically updated by the system
Low threshold Voltages below this value are defined as

valid LOW logic levels
-10V to +10V

Name Alphanumeric name for the device 20 characters max
Note When an IC is tested, the note text will be

displayed as a warning to the user. This
field contains the text for the note for the
device/target combination

Unlimited

Open collector Ticked if one of more device outputs is
open collector. Ignored for AICT and
LMC.

Open emitter Ticked if one of more device outputs is
open emitter. Ignored for AICT and LMC.

Package Package type of the device
Parameters When 2 or more devices share the same

test, the tests can be configured by using
parameters to initialise variables in the
test (e.g. to use different voltages for each
device). This field contains the parameter
initialising code in PLIP format.

Unlimited

Pin out List of pin names for device. To display a
negated pin in SYSTEM 8, enclose all or
part of the pin name in brackets.

8 characters per pin
max (not including
negation brackets)

Power Supply Not on AICT. Power supply voltage for
the device. Note. Currently all devices on
the BFL are tested at 5V regardless of this
field which is included for future
applications.

BFL and CMC: 3V to
5V
LMC 2.5V to 10V

Switch threshold Voltages below this value and above low
threshold are MID LOW (invalid). Above
this value and below high threshold are
MID HIGH (invalid)

-10V to +10V

Technology When sorting the list of devices in the
library, the default order is alphanumeric.
However, if Intelligent sort is enabled
(Tools/Options/Review) this text field can
be used to separate devices in your user
library from different device technology
groups (e.g. LS, HC, ACT etc). It can be
left blank if not required.

20 characters max

Test Bit High BFL only. Voltage on test bit when in high
level

0V to +5V

Test Version Version identification string for the device.
Not used by system

10 characters max

Tri state Ticked if one of more device outputs is tri
state. Ignored for AICT and LMC.

Type (package) If the main package type is DISCRETE,
this setting is the type of discrete package
specified

Use Number For Compact products the device number
must be numeric. This number will be
used to recognise the user test on the
Compact when entered on the Compact

7 characters max

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 61

keypad.
Version Version identification string for the device.

Not used by system
10 characters max

V-I test Ticked if the V-I test and thermal test is
enabled for the device on the BFL.

Voltage test Ticked if the voltage test is enabled for the
device on the BFL or AICT.

11.2. CompactLink error/warning messages
Message Meaning Action
A folder name cannot
contain any of the following
characters: \ / : * ? "" < > |

You are specifying an
invalid character in a folder
name

Choose a different name

A maximum of three
breakpoints can be set

You cannot set more than
3 breakpoint sin your
programme

Remove one of the other
breakpoints and set the
new one

Are you sure you want to
delete ‘XXXX’?

You are about to
permanently delete the
given device

Click Yes to delete or No
to abandon the operation

Are you sure you want to
delete the test:: XXXX

You are about to
permanently remove the
specified test

Click Yes to delete, or No
to abandon

Build cancelled by user The USER library generate
operation was cancelled by
the user

Re generate the USER
library files

Build failed The USER library file
generation failed due to an
error

Identify and correct the
error, then re-generate the
USER library files

Cannot set breakpoint on
this line

The selected line is either
a comment or has no
executable code present
(e.g. SET pin group
command)

Choose another line for
your breakpoint

Error - syntax help for
‘XXXX’ not found

The word under the cursor
has no matching syntax
help topic

Choose another word

Error - syntax help for this
command not found

Missing syntax help for the
selected topic

Choose another topic.
Contact ABI with details of
the problem

Error adding new test There was an error saving
the new test details in the
database

Contact ABI with details

Error copying test There was an error saving
the copied test details in
the database

Contact ABI with details

Error loading device There was an error loading
the device details from the
database

Contact ABI with details

Error loading test There was an error loading
the test details from the
database

Contact ABI with details

Error saving device There was an error saving
the device details in the

Contact ABI with details

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 62

database
Error saving test There was an error saving

the test details in the
database

Contact ABI with details

Feature not implemented The selected function is
not present in the software

Contact ABI with details

Memory dump size must
be between 1 and 12k
(3000H) bytes

The size of the displayed
memory block must
between 1 byte and 12k
(12,288) bytes

Change the start and/or
stop addresses for the
memory dump

Must be numeric value
from X to Y

The voltage value being
entered is invalid

Re-enter according to the
limits given

No devices to build There are no devices in
your USER library

Add at least one USER
device before continuing

Please enter a test name You are trying to rename a
test with a blank test name

Enter a valid name for the
test

Program not built or has
errors, cannot set
breakpoint

You cannot set
breakpoints until you have
successfully compiled your
programme

Correct and errors and
recompile the programme

Search text was not found The text being sought in
the programme was not
found

Re-enter the text to search
for

Source has been changed,
do you wish to save the
changes?

The programme source
text has been changed. If
you exit the debugger now
you will lose your changes

Click Cancel and save the
changed programme
before continuing

Target location does not
exist. Do you want to
create it?

The chosen location for the
generated library files does
not exist

Click Yes to create a new
folder with the given name

The database file is read
only and must have write
permissions to be used in
CompactLink

The main IC library
database cannot be
opened

Check that the file
CompactLinkICLibrary.dat
is present in the
CompactLink folder and
check that it is not read
only. Check that it is not
open within another
running version of
CompactLink

Click Yes to attempt to fix
the problem

There are devices that use
this test. You must select
alternative tests for these
devices before this test
can be removed

You cannot delete a test if
one or more devices are
using it

Specify alternative tests for
the devices before deleting

There was an error
opening the library
database

The main IC library
database cannot be
opened

Check that the file
CompactLinkICLibrary.dat
is present in the
CompactLink folder and
check that it is not read
only. Check that it is not

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 63

open within another
running version of
CompactLink

This will overwrite existing
test, continue?

You are loading a text file
which will overwrite the
existing programme

Click Yes if you want to
overwrite the programme,
otherwise click No and
save the existing
programme

Unable to find the library
database

The main IC library
database cannot be
opened

Check that the file
CompactLinkICLibrary.dat
is present in the
CompactLink folder

Unable to make database
read-write

The main IC library
database cannot be set to
read/write mode

Check that the file
CompactLinkICLibrary.dat
is present in the
CompactLink folder and
check that it is not read
only. Check that it is not
open within another
running version of
CompactLink

Unable to proceed, press
OK to close CompactLink

The software cannot
continue

Click OK and restart the
software

Undefined discrete
package type

The specified discrete
package is undefined

Contact ABI with details

Undefined package type The specified package is
undefined

Contact ABI with details

XXXX already exists,
please use a different
name

You are trying to rename a
test using a name that
already exists

Choose a different name

11.3. PLIP error messages
Message Meaning Action
Cannot change parameters Parameters are read only

and cannot be changed in
a programme

Remove the code which is
attempting to change the
parameter, or use a
variable instead of a
parameter

Cannot define procedure
inside a 'DO WHILE' loop

Procedures cannot be
defined inside a
programme loop

Move the procedure
elsewhere in your program

Cannot define procedure
inside an 'IF ... ELSE ...
END IF' construction

Procedures cannot be
defined inside a
programme IF … ELSE …
END IF construction

Move the procedure
elsewhere in your program

Cannot end test inside
procedure

The END TEST command
cannot be inside a
procedure

Specify the END TEST
command before the
procedure definition(s) in
your programme

'ELSE' found without
corresponding 'IF'

The ELSE command did
not match up with a
corresponding IF

Add an IF statement at the
correct location, or remove
the ELSE statement

'END DO' without The END DO command Add a DO WHILE

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 64

corresponding 'DO WHILE' did not match up with a
corresponding DO WHILE

statement at the correct
location, or remove the
END DO statement

'END IF' without
corresponding 'IF'

The END IF command did
not match up with a
corresponding IF

Add an IF statement at the
correct location, or remove
the END IF statement

'END PROCEDURE'
without corresponding
'PROCEDURE'

The END PROCEDURE
command did not match up
with a corresponding
PROCEDURE

Add a PROCEDURE
statement at the correct
location, or remove the
END PROCEDURE
statement

Expecting ')' after
expression or function

There was a missing
closing bracket in the built-
in function call or
expression

Use correct syntax

Expecting ')' after function There was a missing
closing bracket in the built-
in function call

Use correct syntax

Expecting ')' after round
digits expression

There was a missing
closing bracket after the
round digits expression in
the ROUND() built-in
function

Use correct syntax

Expecting ',' after 1st pin in
'LINKED()' function

There is a missing comma
in the pin list in the
LINKED() function

Add the comma

Expecting ',' after 2nd pin
in 'SET FEEDBACK TO'
command

There is a missing comma
in the argument list for the
SET FEEDBACK TO
command

Use correct syntax

Expecting ',' after
expression

There was a missing
comma after the given
expression

Use correct syntax

Expecting ',' in group pin
list

There is a missing comma
in the list of pins given for
the pin group

Correct the syntax of the
pin list

Expecting ',' in input pin list There is a missing comma
in the list of pins given in
the INPUTS command

Correct the syntax of the
pin list

Expecting ',' in pin list There is a missing comma
in the list of pins given

Correct the syntax of the
pin list

Expecting ',' to separate
items for display

There is a missing comma
in the list of arguments for
the DISPLAY command

Use correct syntax

Expecting ']' after array
index expression

There is a missing closing
square bracket in the
ARRAY statement

Use correct syntax

Expecting ‘”’ to terminate
string

The string in the DISPLAY
command has no
terminating double quote
character

Use correct syntax

Expecting ‘X’ after
expression or function

The specified character
(usually a closing bracket)

Use correct syntax

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 65

was not found after the
expression or function

Expecting ‘X’ in expression The specified character
(usually an opening
bracket) was not found in
the expression

Use correct syntax

Expecting '=' after array
definition

There is a missing = after
the ARRAY statement

Use correct syntax

Expecting '=' after pin
group name

Invalid syntax in SET pin
group command

Use correct syntax

Expecting '=' after pin list
or group

Invalid SYNTAX in CHECK
THAT command

Use correct syntax

Expecting '=' after variable
name

There is a missing = after
the variable definition

Use correct syntax

Expecting '>' to terminate
pin group

The specified pin group
does not have a closing
angle bracket (>)

User correct syntax

Expecting 'BY' after pin
name or number

Incorrect syntax of DRIVE
INCREMENTAL command

Use correct syntax

Expecting expression The compiler was
expecting an expression,
but none was found

Use correct syntax

Expecting 'LOW' or 'HIGH'
after pin name or number

Logic level missing Enter LOW or HIGH as
appropriate

Expecting pin name or pin
number

Compiler expecting a pin
name or number

Use a valid pin name or
number. Check the Device
Information window for
correct pin out

Expecting pin name or pin
number, pin expression
only valid for AICT/LMC
programmes

The pin number can only
be an expression for AICT
or LMC programmes.

For BFL or CMC tests, use
the pin name directly

Expecting string,
expression, NEWLINE or
CHR() after DISPLAY
command

There is no valid argument
for the DISPLAY command

Add a valid argument

Expecting 'THAT' before
pin name, number, list or
group

Invalid SYNTAX in CHECK
THAT command

Use correct syntax

Expecting 'TO' after pin
name or number

Incorrect syntax in DRIVE
command

Use correct syntax

Expecting 'TO' after restrict
pin number

Invalid syntax in
RESTRICT command

Use correct syntax

Expecting 'TO' after source
current expression

Invalid syntax in SOURCE
command

Use correct syntax

Expecting 'TOLERANCE'
after target compare
expression

Invalid SYNTAX in
COMPARE command

Use correct syntax

Expecting 'WITH' after
actual compare expression

Invalid SYNTAX in
COMPARE command

Use correct syntax

Expecting 'WITH' after pin
list or group

Incorrect syntax of DRIVE
command

Use correct syntax

Expression has more than The expression is too Split the expression onto 2

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 66

4 bracket levels complex or more lines using
intermediate variables

Extra ')' There was an additional
closing bracket

Use correct syntax

Hexadecimal number
greater than ^FFFF

You are attempting to
specify a hexadecimal
number greater than
^FFFF

Correct the number or
specify in decimal

Input pin ‘X’ already
defined

The given pin number is
already used in the
INPUTS command pin list

Define each pin only once
in the INPUTS command

Invalid character in pin
number

Pin number can only
contain characters 0-9

Use only digits in the pin
number

Invalid exponent, must be
integer between -99 and
+99

There is a decimal point in
the exponent, which is not
allowed.

Modify the programme to
remove the decimal point.

Invalid pin list Syntax error in pin list Use correct syntax
Invalid procedure name The procedure name

contains invalid characters
Procedure names must
begin with a letter and can
contain only letters,
numbers and underscores

Invalid variable name The variable name
contains invalid characters

Variable names must
begin with a letter and can
contain only letters,
numbers and underscores

Missing 'END DO' The DO WHILE command
did not match up with a
corresponding END DO

Add an END DO statement
at the correct location, or
remove the DO WHILE
statement

Missing 'END IF' The IF command did not
match up with a
corresponding END IF

Add an END IF statement
at the correct location, or
remove the IF statement

Missing 'END
PROCEDURE'

The PROCEDURE
command did not match up
with a corresponding END
PROCEDURE

Add an END
PROCEDURE statement
at the correct location, or
remove the PROCEDURE
statement

More than ‘X’ pins in pin
list

There are too many pins in
the pin list

Normally a pin list can
have 8 pins but in some
circumstances (e.g.
LINKED() function) this
limit may be less. Use the
correct no of pins for the
command/function

More than 5 nested 'DO
WHILE' loops

The loop construction you
have used is too complex
and/or requires too much
memory

Change the structure of
your programme to reduce
the number of nested
loops to 5 or less

More than 5 nested 'IF'
constructions

The IF … ELSE … END IF
construction you have
used is too complex and/or
requires too much memory

Change the structure of
your programme to reduce
the nesting to 5 levels or
less

More than 8 pins in list The pin list in the given Reduce the number of pins

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 67

context can have a
maximum of 8 pins

to 8 or less, or split the
command over two or
more lines

Name ‘XXXX’ already in
use

The procedure name
already exists for a
variable, procedure or
parameter

Use a different name

Number out of range,
exponent must be between
-99 and +99

The number you are
entering is too small or too
large, or is of invalid format

Numbers can range from
-32767e99 to +32767e99.
Check the syntax and use
a number within this range

Parameter ‘XXXX’ already
defined

The specified parameter
already exists

Use a different name

Parameter ‘XXXX’
undefined

The specified parameter
does not exist

Check the spelling of the
parameter name, or define
the parameter

Pin ‘X’ already defined You have used the
specified pin more than
once in the CHECK THAT
command

Use correct syntax

Pin ‘X’ defined more than
once in pin list

The given pin is included
twice or more in the pin list

Include each pin only once

Pin ‘X’ is undefined The specified pin does not
exist in the device pin-out

Check and correct the pin
out and/or the pin name in
your programme

Pin defined more than
once in pin group ‘XXXX’

The given pin is defined
more than once in the pin
group definition

Include each pin only once

Pin group ‘XXXX’ already
defined

The given pin group name
already exists

Use a different name

Pin group ‘XXXX’ has more
than 8 pins

A pin group can have a
maximum of 8 pins

Change to 8 pins or less or
use 2 different pin group
names

Pin group ‘XXXX’
undefined

The specified pin group
does not exist

Check the spelling of the
pin group name, or define
the pin group

Pin group name ‘XXXX’
contains spaces

Spaces are not allowed in
pin group names

Pin group names must
begin with a letter and can
contain only letters,
numbers and underscores

Pin group name ‘XXXX’
has more than 30
characters

The pin group name is too
long

Use a name with up to 30
characters

Pin is undefined A pin does not exist in the
device pin-out

Check and correct the pin
out and/or the pin name
syntax in your programme

Pin number ‘X’ greater
than IC size (Y)

The specified pin number
is greater than the number
of pins for the device

Check the device pin-out
and correct the pin number

Pin number ‘X’ greater
than target product size (Y)

The specified pin number
is greater than the number
of pins on the target
product for the device

Specify a device that can
be tested on the chosen
target product

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 68

Procedure ‘XXXX’ already
defined

The procedure name
already exists for another
procedure

Use a different name

Procedure ‘XXXX’
undefined

The given procedure name
does not exist

Check the spelling of the
procedure name, if
present, or enter a valid
procedure.

Procedure must be defined
after main body of program

Procedures cannot be
defined before the compiler
reaches and END TEST
command, otherwise the
procedure could be
executed at the wrong time

Add an END TEST
command before defining
procedures

Procedure name ‘XXXX’
has more than 30
characters

The procedure name is too
long

Use a name with up to 30
characters

Pulse polarity changed The polarity of the pulse
command has changed
within the same command

Ensure all polarity
(LOW/HIGH) statements
are the same within one
PULSE command

String has more than 48
characters

The string in the DISPLAY
command has more than
48 characters

Use a shorter string

Symbol table internal error An internal error occurred Usually caused by another
error. Remove other errors
and contact ABI with
details if this error remains.

Too many pins in input list
for a XX pin IC

There are more pins in the
pin list for the INPUTS
command than the size of
the IC

Check the IC size and
correct the pin list

Unrecognised syntax The compiler does not
recognise the syntax

Use correct syntax

Variable ‘XXXX’ undefined The specified variable
does not exist

Check the spelling of the
variable name, or define
the variable

Variable name ‘XXXX’ has
more than 30 characters

The variable name is too
long

Use a name with up to 30
characters

11.4. PLIP warning messages
Message Meaning Action
Command ‘XXXX’ is only
valid for ‘XXX’ products

The specified command is
not valid for the target
product for this test

Use the correct command
for the target, or change
the target

'CONFLICTS PIN 1, PIN 3
...' is old SLIM format,
using 'CONFLICTS [PIN 1,
PIN 3 ...]' form

Included for backward
compatibility with old SLIM
programmes

Use the current syntax with
square brackets

'ENDDO' is incorrect
syntax, assuming 'END
DO'

Incorrect syntax of END
DO command

Use correct syntax

'ENDIF' is incorrect syntax,
assuming 'END IF'

Incorrect syntax of END IF
command

Use correct syntax

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 69

'ENDTEST' is incorrect
syntax, assuming 'END
TEST'

Incorrect syntax of END
TEST command

Use correct syntax

Extra characters ignored There is some additional
unnecessary text in the
programme

Use the correct syntax

No ‘END TEST’, one
assumed

There is no END TEST
command in your
programme

Include an END TEST
command at the correct
location

Test end already defined,
ignored

More than one END TEST
statement in programme

Use only 1 END TEST
statement in your
programme in the correct
position

11.5. PLIP run time error messages
Message Meaning Action
Bad 10 bit DAC
value

The voltage is too high for the
10 bit DAC operation.

Modify your programme so that
the voltage expression
evaluates to the correct voltage

Bad 8 bit DAC
value

The voltage is too high for the
8 bit DAC operation.

Modify your programme so that
the voltage expression
evaluates to the correct voltage

Bad array index The index of the ARRAY[] must
be in the range 0 to 127.

Modify your programme so that
the array index expression
evaluates to a number in the
range 0 to 127

Bad number value The result of the expression is
not legal for the operation
being performed. For example,
for the ROUND() function the
number of decimals places
must be 0 or positive.

Modify your programme to
ensure that this cannot occur

Bad pin number The pin number expression
evaluates to a number which is
either zero, negative, or greater
than the IC pin count.

Modify your programmes to
ensure that the pin number
expression gives the correct
result

Bad random seed The seed for the RANDOM()
function must be a non-zero
positive number.

Modify your programme so that
the argument expression for
the RANDOM() function is
always positive

Bad tolerance The TOLERANCE argument
for the AICT/LMC COMPARE
command must be zero or
positive.

Modify your programmes so
that the TOLERANCE
expression evaluates to a
positive number

Divide by zero Division by zero is impossible. Modify the programme so that
the divisor cannot become zero
during execution, or test for this
condition to avoid the division
operation

High voltage A voltage was discovered on a
pin that is too high for safe
operation of the test.

Check the power supply for the
board under test and reduce
the operating voltage

Invalid on this The programme contains a Use the correct target product,

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 70

product command which is invalid on
the target product.

or modify the programme.

Not special
channel

The AICT SOURCE command
is only legal for the special
channels.

Modify your programmes so
that the SOURCE command
uses one of the special
channels

Power supply
overcurrent

Compact products only. The
IC under test appears to have
a large supply current which
cannot be supplied by the
product.

Check with a multimeter – the
IC cannot be tested and is
probably faulty.

Power supply
short

Compact products only. The
IC under test appears to have
a short across its power supply
pins.

Check with a multimeter – the
IC cannot be tested and is
probably faulty.

Stack overflow The programme has run out of
internal stack memory. This
usually happens when a
procedure is called repeatedly
without returning.

Ensure that all procedures
complete before they can be
called again

Vout higher than
PSU

LinearMaster Compact only.
The programme is trying to
output a voltage greater than
the specified supply voltage.
This could cause damage to
the IC.

Modify the programme and/or
change the specified supply
voltage.

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 71

12. Index

A

Adding an IC · 9

Analogue test programming · 30

Appendices · 61

Automatic circuit compensation · 35

B

Breakpoints · 22

C

Checklist · 4

CompactLink error/warning messages ·

63

CompactLink operation · 6

Compiler errors · 23

Compiling a programme · 17

Copying an IC · 8

Copyright · 2

D

Debugging · 21

Debugging window · 15

Deleting an IC · 12

Developing a functional test · 11

Digital test programming · 27

Disclaimers · 2

Documenting programmes · 18

E

Editing an IC · 8

Entering a programme · 17

Example of a 7400 digital IC test · 40

Exporting a device · 12

F

Fixing programme errors · 17

Fixing programme warnings · 17

G

Generating library files · 12

Getting started · 4

H

Hardware connection · 19

Help · 18

I

IC library data structure · 5

Installing CompactLink · 5

Introduction · 3

Introduction to PLIP · 15

L

Library parameter reference · 61

Logical errors · 24

M

Maintenance · 2

CompactLink IC Library Manager Reference

Copyright 2006-2016 ABI Electronics Limited Page 72

P

PLIP command and function reference ·

58

PLIP error messages · 66

PLIP run time error messages · 72

PLIP warning messages · 72

Precautions · 1

Printing a device · 12

Programming concepts · 27

R

Reviewing the IC library · 7

Run time errors · 24

Running CompactLink · 5

S

Specifying a functional test · 9

System requirements · 4

T

Test development window · 15

Troubleshooting and support · 60

V

Viewing an IC · 7

W

Writing test programmes · 15

